Spaces:
Running
on
L40S
Running
on
L40S
File size: 7,226 Bytes
f5e3203 2a04008 f5e3203 2a04008 f5e3203 80c639a f5e3203 ad5bf1a f5e3203 2a04008 80c639a 2a04008 80c639a 2a04008 80c639a 2a04008 80c639a 2a04008 80c639a 2a04008 f5e3203 80c639a f5e3203 ad5bf1a f5e3203 80c639a f5e3203 80c639a f5e3203 ff97c38 2a04008 f5e3203 2a04008 f5e3203 80c639a f5e3203 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
from collections.abc import Sequence
import random
from typing import Optional
import gradio as gr
import spaces
import torch
import transformers
# If the watewrmark is not detected, consider the use case. Could be because of
# the nature of the task (e.g., fatcual responses are lower entropy) or it could
# be another
_MODEL_IDENTIFIER = 'google/gemma-2b'
_DETECTOR_IDENTIFIER = 'gg-hf/detector_2b_1.0_demo'
_PROMPTS: tuple[str] = (
'prompt 1',
'prompt 2',
'prompt 3',
)
_CORRECT_ANSWERS: dict[str, bool] = {}
_TORCH_DEVICE = (
torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu")
)
_WATERMARK_CONFIG_DICT = dict(
ngram_len=5,
keys=[
654,
400,
836,
123,
340,
443,
597,
160,
57,
29,
590,
639,
13,
715,
468,
990,
966,
226,
324,
585,
118,
504,
421,
521,
129,
669,
732,
225,
90,
960,
],
sampling_table_size=2**16,
sampling_table_seed=0,
context_history_size=1024,
)
_WATERMARK_CONFIG = transformers.generation.SynthIDTextWatermarkingConfig(
**_WATERMARK_CONFIG_DICT
)
tokenizer = transformers.AutoTokenizer.from_pretrained(_MODEL_IDENTIFIER)
tokenizer.pad_token_id = tokenizer.eos_token_id
model = transformers.AutoModelForCausalLM.from_pretrained(_MODEL_IDENTIFIER)
model.to(_TORCH_DEVICE)
logits_processor = transformers.generation.SynthIDTextWatermarkLogitsProcessor(
**_WATERMARK_CONFIG_DICT,
device=_TORCH_DEVICE,
)
detector_module = transformers.generation.BayesianDetectorModel.from_pretrained(
_DETECTOR_IDENTIFIER,
)
detector_module.to(_TORCH_DEVICE)
detector = transformers.generation.watermarking.BayesianDetectorModel(
detector_module=detector_module,
logits_processor=logits_processor,
tokenizer=tokenizer,
)
@spaces.GPU
def generate_outputs(
prompts: Sequence[str],
watermarking_config: Optional[
transformers.generation.SynthIDTextWatermarkingConfig
] = None,
) -> Sequence[str]:
tokenized_prompts = tokenizer(prompts, return_tensors='pt').to(_TORCH_DEVICE)
output_sequences = model.generate(
**tokenized_prompts,
watermarking_config=watermarking_config,
do_sample=True,
max_length=500,
top_k=40,
)
detections = detector(output_sequences)
print(detections)
return tokenizer.batch_decode(output_sequences)
with gr.Blocks() as demo:
gr.Markdown(
'''
# Using SynthID Text in your Genreative AI projects
[SynthID][synthid] is a Google DeepMind technology that watermarks and
identifies AI-generated content by embedding digital watermarks directly
into AI-generated images, audio, text or video.
SynthID Text is an open source implementation of this technology available
in Hugging Face Transformers that has two major components:
* A [logits processor][synthid-hf-logits-processor] that is
[configured][synthid-hf-config] on a per-model basis and activated when
calling `.generate()`; and
* A [detector][synthid-hf-detector] trained to recognized watermarked text
generated by a specific model with a specific configuraiton.
This Space demonstrates:
1. How to use SynthID Text to apply a watermark to text generated by your
model; and
1. How to indetify that text using a ready-made detector.
Note that this detector is trained specifically fore this demonstration. You
should maintain a specific watermarking configuration for every model you
use and protect that configuration as you would any other secret. See the
[end-to-end guide][synthid-hf-detector-e2e] for more on training your own
detectors, and the [SynthID Text documentaiton][raitk-synthid] for more on
how this technology works.
[raitk-synthid]: /responsible/docs/safeguards/synthid
[synthid]: https://deepmind.google/technologies/synthid/
[synthid-hf-config]: https://github.com/huggingface/transformers/blob/v4.46.0/src/transformers/generation/configuration_utils.py
[synthid-hf-detector]: https://github.com/huggingface/transformers/blob/v4.46.0/src/transformers/generation/watermarking.py
[synthid-hf-detector-e2e]: https://github.com/huggingface/transformers/blob/v4.46.0/examples/research_projects/synthid_text/detector_bayesian.py
[synthid-hf-logits-processor]: https://github.com/huggingface/transformers/blob/v4.46.0/src/transformers/generation/logits_process.py
'''
)
prompt_inputs = [
gr.Textbox(value=prompt, lines=4, label='Prompt')
for prompt in _PROMPTS
]
generate_btn = gr.Button('Generate')
with gr.Column(visible=False) as generations_col:
gr.Markdown(
'''
# SynthID: Tool
'''
)
generations_grp = gr.CheckboxGroup(
label='All generations, in random order',
info='Select the generations you think are watermarked!',
)
reveal_btn = gr.Button('Reveal', visible=False)
with gr.Column(visible=False) as detections_col:
gr.Markdown(
'''
# SynthID: Tool
'''
)
revealed_grp = gr.CheckboxGroup(
label='Ground truth for all generations',
info=(
'Watermarked generations are checked, and your selection are '
'marked as correct or incorrect in the text.'
),
)
detect_btn = gr.Button('Detect', visible=False)
def generate(*prompts):
standard = generate_outputs(prompts=prompts)
watermarked = generate_outputs(
prompts=prompts,
watermarking_config=_WATERMARK_CONFIG,
)
responses = standard + watermarked
random.shuffle(responses)
_CORRECT_ANSWERS.update({
response: response in watermarked
for response in responses
})
# Load model
return {
generate_btn: gr.Button(visible=False),
generations_col: gr.Column(visible=True),
generations_grp: gr.CheckboxGroup(
responses,
),
reveal_btn: gr.Button(visible=True),
}
generate_btn.click(
generate,
inputs=prompt_inputs,
outputs=[generate_btn, generations_col, generations_grp, reveal_btn]
)
def reveal(user_selections: list[str]):
choices: list[str] = []
value: list[str] = []
for response, is_watermarked in _CORRECT_ANSWERS.items():
if is_watermarked and response in user_selections:
choice = f'Correct! {response}'
elif not is_watermarked and response not in user_selections:
choice = f'Correct! {response}'
else:
choice = f'Incorrect. {response}'
choices.append(choice)
if is_watermarked:
value.append(choice)
return {
reveal_btn: gr.Button(visible=False),
detections_col: gr.Column(visible=True),
revealed_grp: gr.CheckboxGroup(choices=choices, value=value),
detect_btn: gr.Button(visible=True),
}
reveal_btn.click(
reveal,
inputs=generations_grp,
outputs=[
reveal_btn,
detections_col,
revealed_grp,
detect_btn
],
)
if __name__ == '__main__':
demo.launch()
|