seam-carving / app.py
givkashi's picture
Update app.py
960eb38
# USAGE:
import os
import gradio as gr
from PIL import Image, ImageOps
os.mkdir("data")
#os.system("wget https://github.com/andrewdcampbell/seam-carving/blob/master/demos/beach.jpg -P data")
#os.system("wget https://github.com/andrewdcampbell/seam-carving/raw/master/demos/castle.jpg ")
os.system("pip install opencv-python-headless")
os.system("pip install scipy")
#os.system("pip install numba")
#os.system("pip install numpy==1.20")
import numpy as np
import cv2
import argparse
#from numba import njit
from scipy import ndimage as ndi
SEAM_COLOR = np.array([255, 200, 200]) # seam visualization color (BGR)
SHOULD_DOWNSIZE = False # if True, downsize image for faster carving
DOWNSIZE_WIDTH = 500 # resized image width if SHOULD_DOWNSIZE is True
ENERGY_MASK_CONST = 100000.0 # large energy value for protective masking
MASK_THRESHOLD = 10 # minimum pixel intensity for binary mask
USE_FORWARD_ENERGY = True # if True, use forward energy algorithm
########################################
# UTILITY CODE
########################################
def visualize(im, boolmask=None, rotate=False):
vis = im.astype(np.uint8)
if boolmask is not None:
vis[np.where(boolmask == False)] = SEAM_COLOR
if rotate:
vis = rotate_image(vis, False)
cv2.imshow("visualization", vis)
cv2.waitKey(1)
return vis
def resize(image, width):
dim = None
h, w = image.shape[:2]
dim = (width, int(h * width / float(w)))
return cv2.resize(image, dim)
def rotate_image(image, clockwise):
k = 1 if clockwise else 3
return np.rot90(image, k)
########################################
# ENERGY FUNCTIONS
########################################
def backward_energy(im):
"""
Simple gradient magnitude energy map.
"""
xgrad = ndi.convolve1d(im, np.array([1, 0, -1]), axis=1, mode='wrap')
ygrad = ndi.convolve1d(im, np.array([1, 0, -1]), axis=0, mode='wrap')
grad_mag = np.sqrt(np.sum(xgrad ** 2, axis=2) + np.sum(ygrad ** 2, axis=2))
# vis = visualize(grad_mag)
# cv2.imwrite("backward_energy_demo.jpg", vis)
return grad_mag
def forward_energy(im):
"""
Forward energy algorithm as described in "Improved Seam Carving for Video Retargeting"
by Rubinstein, Shamir, Avidan.
Vectorized code adapted from
https://github.com/axu2/improved-seam-carving.
"""
h, w = im.shape[:2]
im = cv2.cvtColor(im.astype(np.uint8), cv2.COLOR_BGR2GRAY).astype(np.float64)
energy = np.zeros((h, w))
m = np.zeros((h, w))
U = np.roll(im, 1, axis=0)
L = np.roll(im, 1, axis=1)
R = np.roll(im, -1, axis=1)
cU = np.abs(R - L)
cL = np.abs(U - L) + cU
cR = np.abs(U - R) + cU
for i in range(1, h):
mU = m[i - 1]
mL = np.roll(mU, 1)
mR = np.roll(mU, -1)
mULR = np.array([mU, mL, mR])
cULR = np.array([cU[i], cL[i], cR[i]])
mULR += cULR
argmins = np.argmin(mULR, axis=0)
m[i] = np.choose(argmins, mULR)
energy[i] = np.choose(argmins, cULR)
# vis = visualize(energy)
# cv2.imwrite("forward_energy_demo.jpg", vis)
return energy
########################################
# SEAM HELPER FUNCTIONS
########################################
#@njit
def add_seam(im, seam_idx):
"""
Add a vertical seam to a 3-channel color image at the indices provided
by averaging the pixels values to the left and right of the seam.
Code adapted from https://github.com/vivianhylee/seam-carving.
"""
h, w = im.shape[:2]
output = np.zeros((h, w + 1, 3))
for row in range(h):
col = seam_idx[row]
for ch in range(3):
if col == 0:
p = np.mean(im[row, col: col + 2, ch])
output[row, col, ch] = im[row, col, ch]
output[row, col + 1, ch] = p
output[row, col + 1:, ch] = im[row, col:, ch]
else:
p = np.mean(im[row, col - 1: col + 1, ch])
output[row, : col, ch] = im[row, : col, ch]
output[row, col, ch] = p
output[row, col + 1:, ch] = im[row, col:, ch]
return output
#@njit
def add_seam_grayscale(im, seam_idx):
"""
Add a vertical seam to a grayscale image at the indices provided
by averaging the pixels values to the left and right of the seam.
"""
h, w = im.shape[:2]
output = np.zeros((h, w + 1))
for row in range(h):
col = seam_idx[row]
if col == 0:
p = np.mean(im[row, col: col + 2])
output[row, col] = im[row, col]
output[row, col + 1] = p
output[row, col + 1:] = im[row, col:]
else:
p = np.mean(im[row, col - 1: col + 1])
output[row, : col] = im[row, : col]
output[row, col] = p
output[row, col + 1:] = im[row, col:]
return output
def remove_seam(im, boolmask):
h, w = im.shape[:2]
boolmask3c = np.stack([boolmask] * 3, axis=2)
return im[boolmask3c].reshape((h, w - 1, 3))
def remove_seam_grayscale(im, boolmask):
h, w = im.shape[:2]
return im[boolmask].reshape((h, w - 1))
def get_minimum_seam(im, mask=None, remove_mask=None):
"""
DP algorithm for finding the seam of minimum energy. Code adapted from
https://karthikkaranth.me/blog/implementing-seam-carving-with-python/
"""
h, w = im.shape[:2]
energyfn = forward_energy if USE_FORWARD_ENERGY else backward_energy
M = energyfn(im)
if mask is not None:
M[np.where(mask > MASK_THRESHOLD)] = ENERGY_MASK_CONST
# give removal mask priority over protective mask by using larger negative value
if remove_mask is not None:
M[np.where(remove_mask > MASK_THRESHOLD)] = -ENERGY_MASK_CONST * 100
seam_idx, boolmask = compute_shortest_path(M, im, h, w)
return np.array(seam_idx), boolmask
#@njit
def compute_shortest_path(M, im, h, w):
backtrack = np.zeros_like(M, dtype=np.int_)
# populate DP matrix
for i in range(1, h):
for j in range(0, w):
if j == 0:
idx = np.argmin(M[i - 1, j:j + 2])
backtrack[i, j] = idx + j
min_energy = M[i - 1, idx + j]
else:
idx = np.argmin(M[i - 1, j - 1:j + 2])
backtrack[i, j] = idx + j - 1
min_energy = M[i - 1, idx + j - 1]
M[i, j] += min_energy
# backtrack to find path
seam_idx = []
boolmask = np.ones((h, w), dtype=np.bool_)
j = np.argmin(M[-1])
for i in range(h - 1, -1, -1):
boolmask[i, j] = False
seam_idx.append(j)
j = backtrack[i, j]
seam_idx.reverse()
return seam_idx, boolmask
########################################
# MAIN ALGORITHM
########################################
def seams_removal(im, num_remove, mask=None, vis=False, rot=False):
for _ in range(num_remove):
seam_idx, boolmask = get_minimum_seam(im, mask)
if vis:
visualize(im, boolmask, rotate=rot)
im = remove_seam(im, boolmask)
if mask is not None:
mask = remove_seam_grayscale(mask, boolmask)
return im, mask
def seams_insertion(im, num_add, mask=None, vis=False, rot=False):
seams_record = []
temp_im = im.copy()
temp_mask = mask.copy() if mask is not None else None
for _ in range(num_add):
seam_idx, boolmask = get_minimum_seam(temp_im, temp_mask)
if vis:
visualize(temp_im, boolmask, rotate=rot)
seams_record.append(seam_idx)
temp_im = remove_seam(temp_im, boolmask)
if temp_mask is not None:
temp_mask = remove_seam_grayscale(temp_mask, boolmask)
seams_record.reverse()
for _ in range(num_add):
seam = seams_record.pop()
im = add_seam(im, seam)
if vis:
visualize(im, rotate=rot)
if mask is not None:
mask = add_seam_grayscale(mask, seam)
# update the remaining seam indices
for remaining_seam in seams_record:
remaining_seam[np.where(remaining_seam >= seam)] += 2
return im, mask
########################################
# MAIN DRIVER FUNCTIONS
########################################
def seam_carve(im, dy, dx, mask=None, vis=False):
im = im.astype(np.float64)
h, w = im.shape[:2]
print(dy, dx)
assert h + dy > 0 and w + dx > 0 and dy <= h and dx <= w
if mask is not None:
mask = mask.astype(np.float64)
output = im
if dx < 0:
output, mask = seams_removal(output, -dx, mask, vis)
elif dx > 0:
output, mask = seams_insertion(output, dx, mask, vis)
if dy < 0:
output = rotate_image(output, True)
if mask is not None:
mask = rotate_image(mask, True)
output, mask = seams_removal(output, -dy, mask, vis, rot=True)
output = rotate_image(output, False)
elif dy > 0:
output = rotate_image(output, True)
if mask is not None:
mask = rotate_image(mask, True)
output, mask = seams_insertion(output, dy, mask, vis, rot=True)
output = rotate_image(output, False)
return output
def object_removal(im, rmask, mask=None, vis=False, horizontal_removal=False):
im = im.astype(np.float64)
rmask = rmask.astype(np.float64)
if mask is not None:
mask = mask.astype(np.float64)
output = im
h, w = im.shape[:2]
if horizontal_removal:
output = rotate_image(output, True)
rmask = rotate_image(rmask, True)
if mask is not None:
mask = rotate_image(mask, True)
while len(np.where(rmask > MASK_THRESHOLD)[0]) > 0:
seam_idx, boolmask = get_minimum_seam(output, mask, rmask)
if vis:
visualize(output, boolmask, rotate=horizontal_removal)
output = remove_seam(output, boolmask)
rmask = remove_seam_grayscale(rmask, boolmask)
if mask is not None:
mask = remove_seam_grayscale(mask, boolmask)
num_add = (h if horizontal_removal else w) - output.shape[1]
output, mask = seams_insertion(output, num_add, mask, vis, rot=horizontal_removal)
if horizontal_removal:
output = rotate_image(output, False)
return output
def main_seam_carve(input_path, as_width,as_height):
IM_PATH = input_path
MASK_PATH = None #"-mask", help="Path to (protective) mask"
R_MASK_PATH = None #"-rmask", help="Path to removal mask"
vis=False
im = cv2.imread(IM_PATH)
assert im is not None
mask = cv2.imread(MASK_PATH, 0) if MASK_PATH else None
rmask = cv2.imread(R_MASK_PATH, 0) if R_MASK_PATH else None
# downsize image for faster processing
h, w = im.shape[:2]
new_width=int(as_width*w)
new_height=int(as_height*h)
dx = new_width - w
dy = new_height - h
if SHOULD_DOWNSIZE and w > DOWNSIZE_WIDTH:
im = resize(im, width=DOWNSIZE_WIDTH)
if mask is not None:
mask = resize(mask, width=DOWNSIZE_WIDTH)
if rmask is not None:
rmask = resize(rmask, width=DOWNSIZE_WIDTH)
# image resize mode
print(os.system("!ls"))
output = seam_carve(im, dy, dx, mask, vis)
return output
def infer(img,option1,option2):
aspect_ratio_w=float(option1)
aspect_ratio_h=float(option2)
img.save("./data.png")
output=main_seam_carve("./data.png",aspect_ratio_w,aspect_ratio_h)
cv2.imwrite("./output.png",output)
print(os.system("ls"))
return "./output.png","./output.png"
inputs = [gr.inputs.Image(type='pil', label="Original Image"),gr.inputs.Radio(choices=["0.5","1","1.5","2"], type="value", default="0.5", label="select aspect ratio width"),gr.inputs.Radio(choices=["0.5","1","1.5","2"], type="value", default="0.5", label="select aspect ratio height")]
outputs = [gr.outputs.Image(type="file",label="output"), gr.outputs.File(label="dowload output image")]
title = "Seam Carving demo"
description = "Gradio demo for Seam Carving: Seam Carving for Content Aware Image Resizing and Object Removal. To use it, simply upload your image and select aspect ratio, or click one of the examples to load them. Read more at the links below."
article = "<p style='text-align: center'><a href='http://graphics.cs.cmu.edu/courses/15-463/2012_fall/hw/proj3-seamcarving/imret.pdf' target='_blank'>Seam Carving for Content Aware Image Resizing and Object Removal</a> | <a href='https://github.com/andrewdcampbell/seam-carving' target='_blank'>Github Repo</a></p>"
examples = [
['source.jpg',"1","1.5"]
]
gr.Interface(infer, inputs, outputs, title=title, description=description, article=article, examples=examples).launch(enable_queue=True,cache_examples=True)