File size: 12,715 Bytes
b95bb85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
960eb38
b95bb85
 
 
 
 
 
 
 
 
 
 
 
 
 
960eb38
b95bb85
960eb38
b95bb85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
960eb38
b95bb85
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
# USAGE:
import os
import gradio as gr
from PIL import Image, ImageOps
os.mkdir("data")
#os.system("wget https://github.com/andrewdcampbell/seam-carving/blob/master/demos/beach.jpg -P data")
#os.system("wget https://github.com/andrewdcampbell/seam-carving/raw/master/demos/castle.jpg ")
os.system("pip install opencv-python-headless")
os.system("pip install scipy")
#os.system("pip install numba")
#os.system("pip install numpy==1.20")
import numpy as np
import cv2
import argparse
#from numba import njit
from scipy import ndimage as ndi

SEAM_COLOR = np.array([255, 200, 200])  # seam visualization color (BGR)
SHOULD_DOWNSIZE = False  # if True, downsize image for faster carving
DOWNSIZE_WIDTH = 500  # resized image width if SHOULD_DOWNSIZE is True
ENERGY_MASK_CONST = 100000.0  # large energy value for protective masking
MASK_THRESHOLD = 10  # minimum pixel intensity for binary mask
USE_FORWARD_ENERGY = True  # if True, use forward energy algorithm


########################################
# UTILITY CODE
########################################

def visualize(im, boolmask=None, rotate=False):
    vis = im.astype(np.uint8)
    if boolmask is not None:
        vis[np.where(boolmask == False)] = SEAM_COLOR
    if rotate:
        vis = rotate_image(vis, False)
    cv2.imshow("visualization", vis)
    cv2.waitKey(1)
    return vis


def resize(image, width):
    dim = None
    h, w = image.shape[:2]
    dim = (width, int(h * width / float(w)))
    return cv2.resize(image, dim)


def rotate_image(image, clockwise):
    k = 1 if clockwise else 3
    return np.rot90(image, k)


########################################
# ENERGY FUNCTIONS
########################################

def backward_energy(im):
    """
    Simple gradient magnitude energy map.
    """
    xgrad = ndi.convolve1d(im, np.array([1, 0, -1]), axis=1, mode='wrap')
    ygrad = ndi.convolve1d(im, np.array([1, 0, -1]), axis=0, mode='wrap')

    grad_mag = np.sqrt(np.sum(xgrad ** 2, axis=2) + np.sum(ygrad ** 2, axis=2))

    # vis = visualize(grad_mag)
    # cv2.imwrite("backward_energy_demo.jpg", vis)

    return grad_mag


def forward_energy(im):
    """
    Forward energy algorithm as described in "Improved Seam Carving for Video Retargeting"
    by Rubinstein, Shamir, Avidan.

    Vectorized code adapted from
    https://github.com/axu2/improved-seam-carving.
    """
    h, w = im.shape[:2]
    im = cv2.cvtColor(im.astype(np.uint8), cv2.COLOR_BGR2GRAY).astype(np.float64)

    energy = np.zeros((h, w))
    m = np.zeros((h, w))

    U = np.roll(im, 1, axis=0)
    L = np.roll(im, 1, axis=1)
    R = np.roll(im, -1, axis=1)

    cU = np.abs(R - L)
    cL = np.abs(U - L) + cU
    cR = np.abs(U - R) + cU

    for i in range(1, h):
        mU = m[i - 1]
        mL = np.roll(mU, 1)
        mR = np.roll(mU, -1)

        mULR = np.array([mU, mL, mR])
        cULR = np.array([cU[i], cL[i], cR[i]])
        mULR += cULR

        argmins = np.argmin(mULR, axis=0)
        m[i] = np.choose(argmins, mULR)
        energy[i] = np.choose(argmins, cULR)

    # vis = visualize(energy)
    # cv2.imwrite("forward_energy_demo.jpg", vis)

    return energy


########################################
# SEAM HELPER FUNCTIONS
########################################

#@njit
def add_seam(im, seam_idx):
    """
    Add a vertical seam to a 3-channel color image at the indices provided
    by averaging the pixels values to the left and right of the seam.

    Code adapted from https://github.com/vivianhylee/seam-carving.
    """
    h, w = im.shape[:2]
    output = np.zeros((h, w + 1, 3))
    for row in range(h):
        col = seam_idx[row]
        for ch in range(3):
            if col == 0:
                p = np.mean(im[row, col: col + 2, ch])
                output[row, col, ch] = im[row, col, ch]
                output[row, col + 1, ch] = p
                output[row, col + 1:, ch] = im[row, col:, ch]
            else:
                p = np.mean(im[row, col - 1: col + 1, ch])
                output[row, : col, ch] = im[row, : col, ch]
                output[row, col, ch] = p
                output[row, col + 1:, ch] = im[row, col:, ch]

    return output


#@njit
def add_seam_grayscale(im, seam_idx):
    """
    Add a vertical seam to a grayscale image at the indices provided
    by averaging the pixels values to the left and right of the seam.
    """
    h, w = im.shape[:2]
    output = np.zeros((h, w + 1))
    for row in range(h):
        col = seam_idx[row]
        if col == 0:
            p = np.mean(im[row, col: col + 2])
            output[row, col] = im[row, col]
            output[row, col + 1] = p
            output[row, col + 1:] = im[row, col:]
        else:
            p = np.mean(im[row, col - 1: col + 1])
            output[row, : col] = im[row, : col]
            output[row, col] = p
            output[row, col + 1:] = im[row, col:]

    return output


def remove_seam(im, boolmask):
    h, w = im.shape[:2]
    boolmask3c = np.stack([boolmask] * 3, axis=2)
    return im[boolmask3c].reshape((h, w - 1, 3))


def remove_seam_grayscale(im, boolmask):
    h, w = im.shape[:2]
    return im[boolmask].reshape((h, w - 1))


def get_minimum_seam(im, mask=None, remove_mask=None):
    """
    DP algorithm for finding the seam of minimum energy. Code adapted from
    https://karthikkaranth.me/blog/implementing-seam-carving-with-python/
    """
    h, w = im.shape[:2]
    energyfn = forward_energy if USE_FORWARD_ENERGY else backward_energy
    M = energyfn(im)

    if mask is not None:
        M[np.where(mask > MASK_THRESHOLD)] = ENERGY_MASK_CONST

    # give removal mask priority over protective mask by using larger negative value
    if remove_mask is not None:
        M[np.where(remove_mask > MASK_THRESHOLD)] = -ENERGY_MASK_CONST * 100

    seam_idx, boolmask = compute_shortest_path(M, im, h, w)

    return np.array(seam_idx), boolmask


#@njit
def compute_shortest_path(M, im, h, w):
    backtrack = np.zeros_like(M, dtype=np.int_)

    # populate DP matrix
    for i in range(1, h):
        for j in range(0, w):
            if j == 0:
                idx = np.argmin(M[i - 1, j:j + 2])
                backtrack[i, j] = idx + j
                min_energy = M[i - 1, idx + j]
            else:
                idx = np.argmin(M[i - 1, j - 1:j + 2])
                backtrack[i, j] = idx + j - 1
                min_energy = M[i - 1, idx + j - 1]

            M[i, j] += min_energy

    # backtrack to find path
    seam_idx = []
    boolmask = np.ones((h, w), dtype=np.bool_)
    j = np.argmin(M[-1])
    for i in range(h - 1, -1, -1):
        boolmask[i, j] = False
        seam_idx.append(j)
        j = backtrack[i, j]

    seam_idx.reverse()
    return seam_idx, boolmask


########################################
# MAIN ALGORITHM
########################################

def seams_removal(im, num_remove, mask=None, vis=False, rot=False):
    for _ in range(num_remove):
        seam_idx, boolmask = get_minimum_seam(im, mask)
        if vis:
            visualize(im, boolmask, rotate=rot)
        im = remove_seam(im, boolmask)
        if mask is not None:
            mask = remove_seam_grayscale(mask, boolmask)
    return im, mask


def seams_insertion(im, num_add, mask=None, vis=False, rot=False):
    seams_record = []
    temp_im = im.copy()
    temp_mask = mask.copy() if mask is not None else None

    for _ in range(num_add):
        seam_idx, boolmask = get_minimum_seam(temp_im, temp_mask)
        if vis:
            visualize(temp_im, boolmask, rotate=rot)

        seams_record.append(seam_idx)
        temp_im = remove_seam(temp_im, boolmask)
        if temp_mask is not None:
            temp_mask = remove_seam_grayscale(temp_mask, boolmask)

    seams_record.reverse()

    for _ in range(num_add):
        seam = seams_record.pop()
        im = add_seam(im, seam)
        if vis:
            visualize(im, rotate=rot)
        if mask is not None:
            mask = add_seam_grayscale(mask, seam)

        # update the remaining seam indices
        for remaining_seam in seams_record:
            remaining_seam[np.where(remaining_seam >= seam)] += 2

    return im, mask


########################################
# MAIN DRIVER FUNCTIONS
########################################

def seam_carve(im, dy, dx, mask=None, vis=False):
    im = im.astype(np.float64)
    h, w = im.shape[:2]
    print(dy, dx)
    assert h + dy > 0 and w + dx > 0 and dy <= h and dx <= w

    if mask is not None:
        mask = mask.astype(np.float64)

    output = im

    if dx < 0:
        output, mask = seams_removal(output, -dx, mask, vis)

    elif dx > 0:
        output, mask = seams_insertion(output, dx, mask, vis)

    if dy < 0:
        output = rotate_image(output, True)
        if mask is not None:
            mask = rotate_image(mask, True)
        output, mask = seams_removal(output, -dy, mask, vis, rot=True)
        output = rotate_image(output, False)

    elif dy > 0:
        output = rotate_image(output, True)
        if mask is not None:
            mask = rotate_image(mask, True)
        output, mask = seams_insertion(output, dy, mask, vis, rot=True)
        output = rotate_image(output, False)

    return output


def object_removal(im, rmask, mask=None, vis=False, horizontal_removal=False):
    im = im.astype(np.float64)
    rmask = rmask.astype(np.float64)
    if mask is not None:
        mask = mask.astype(np.float64)
    output = im

    h, w = im.shape[:2]

    if horizontal_removal:
        output = rotate_image(output, True)
        rmask = rotate_image(rmask, True)
        if mask is not None:
            mask = rotate_image(mask, True)

    while len(np.where(rmask > MASK_THRESHOLD)[0]) > 0:
        seam_idx, boolmask = get_minimum_seam(output, mask, rmask)
        if vis:
            visualize(output, boolmask, rotate=horizontal_removal)
        output = remove_seam(output, boolmask)
        rmask = remove_seam_grayscale(rmask, boolmask)
        if mask is not None:
            mask = remove_seam_grayscale(mask, boolmask)

    num_add = (h if horizontal_removal else w) - output.shape[1]
    output, mask = seams_insertion(output, num_add, mask, vis, rot=horizontal_removal)
    if horizontal_removal:
        output = rotate_image(output, False)

    return output

def main_seam_carve(input_path, as_width,as_height):
    IM_PATH = input_path
    MASK_PATH = None  #"-mask", help="Path to (protective) mask"
    R_MASK_PATH = None  #"-rmask", help="Path to removal mask"

    vis=False

    im = cv2.imread(IM_PATH)
    assert im is not None
    mask = cv2.imread(MASK_PATH, 0) if MASK_PATH else None
    rmask = cv2.imread(R_MASK_PATH, 0) if R_MASK_PATH else None

    # downsize image for faster processing
    h, w = im.shape[:2]
    new_width=int(as_width*w)
    new_height=int(as_height*h)
    dx = new_width - w
    dy = new_height - h
    if SHOULD_DOWNSIZE and w > DOWNSIZE_WIDTH:
        im = resize(im, width=DOWNSIZE_WIDTH)
        if mask is not None:
            mask = resize(mask, width=DOWNSIZE_WIDTH)
        if rmask is not None:
            rmask = resize(rmask, width=DOWNSIZE_WIDTH)

    # image resize mode
    print(os.system("!ls"))
    output = seam_carve(im, dy, dx, mask, vis)
    return output


def infer(img,option1,option2):
  aspect_ratio_w=float(option1)
  aspect_ratio_h=float(option2)
  img.save("./data.png")

  output=main_seam_carve("./data.png",aspect_ratio_w,aspect_ratio_h)
  cv2.imwrite("./output.png",output)
  print(os.system("ls"))
  return "./output.png","./output.png"
  
inputs = [gr.inputs.Image(type='pil', label="Original Image"),gr.inputs.Radio(choices=["0.5","1","1.5","2"], type="value", default="0.5", label="select aspect ratio width"),gr.inputs.Radio(choices=["0.5","1","1.5","2"], type="value", default="0.5", label="select aspect ratio height")]
outputs = [gr.outputs.Image(type="file",label="output"), gr.outputs.File(label="dowload output image")]
title = "Seam Carving demo"
description = "Gradio demo for Seam Carving: Seam Carving for Content Aware Image Resizing and Object Removal. To use it, simply upload your image and select aspect ratio, or click one of the examples to load them. Read more at the links below."
article = "<p style='text-align: center'><a href='http://graphics.cs.cmu.edu/courses/15-463/2012_fall/hw/proj3-seamcarving/imret.pdf' target='_blank'>Seam Carving for Content Aware Image Resizing and Object Removal</a> | <a href='https://github.com/andrewdcampbell/seam-carving' target='_blank'>Github Repo</a></p>"
examples = [
  ['source.jpg',"1","1.5"]
]
gr.Interface(infer, inputs, outputs, title=title, description=description, article=article, examples=examples).launch(enable_queue=True,cache_examples=True)