Spaces:
Running
Running
import gradio as gr | |
from transformers import StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer | |
from threading import Thread | |
import torch | |
from huggingface_hub import InferenceClient | |
""" | |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference | |
""" | |
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
from unsloth import FastLanguageModel | |
import torch | |
max_seq_length = 2048 | |
dtype = torch.float16 | |
load_in_4bit = True | |
model_id = "giustinod/TestLogica-AZService" | |
model, tokenizer = FastLanguageModel.from_pretrained( | |
model_name = model_id, | |
max_seq_length = max_seq_length, | |
dtype = dtype, | |
load_in_4bit = load_in_4bit | |
) | |
FastLanguageModel.for_inference(model) # Enable native 2x faster inference | |
class StopOnTokens(StoppingCriteria): | |
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: | |
stop_ids = [29, 0] | |
for stop_id in stop_ids: | |
if input_ids[0][-1] == stop_id: | |
return True | |
return False | |
def predict(message, history): | |
history_transformer_format = history + [[message, ""]] | |
stop = StopOnTokens() | |
messages = "".join(["".join(["\n<human>:"+str(item[0]), "\n<bot>:"+str(item[1])]) | |
for item in history_transformer_format]) | |
model_inputs = tokenizer([messages], return_tensors="pt").to("cuda") | |
streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True) | |
generate_kwargs = dict( | |
model_inputs, | |
streamer = streamer, | |
max_new_tokens = 1024, | |
do_sample = True, | |
top_p = 0.95, | |
top_k = 1000, | |
temperature = 1.0, | |
num_beams = 1, | |
stopping_criteria = StoppingCriteriaList([stop]) | |
) | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() | |
partial_message = "" | |
for new_token in streamer: | |
if new_token != '<': | |
partial_message += new_token | |
yield partial_message | |
if __name__ == "__main__": | |
gr.ChatInterface(predict).launch() |