Spaces:
Running
Running
File size: 2,160 Bytes
f3263fe 1d9419a f3263fe 1d9419a f3263fe 1d9419a f3263fe 1d9419a f3263fe 1d9419a f3263fe 1d9419a f3263fe 1d9419a f3263fe 1d9419a f3263fe 1d9419a f3263fe 1d9419a f3263fe 1d9419a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
import gradio as gr
from transformers import StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer
from threading import Thread
import torch
from huggingface_hub import InferenceClient
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
from unsloth import FastLanguageModel
import torch
max_seq_length = 2048
dtype = torch.float16
load_in_4bit = True
model_id = "giustinod/TestLogica-AZService"
model, tokenizer = FastLanguageModel.from_pretrained(
model_name = model_id,
max_seq_length = max_seq_length,
dtype = dtype,
load_in_4bit = load_in_4bit
)
FastLanguageModel.for_inference(model) # Enable native 2x faster inference
class StopOnTokens(StoppingCriteria):
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
stop_ids = [29, 0]
for stop_id in stop_ids:
if input_ids[0][-1] == stop_id:
return True
return False
def predict(message, history):
history_transformer_format = history + [[message, ""]]
stop = StopOnTokens()
messages = "".join(["".join(["\n<human>:"+str(item[0]), "\n<bot>:"+str(item[1])])
for item in history_transformer_format])
model_inputs = tokenizer([messages], return_tensors="pt").to("cuda")
streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
model_inputs,
streamer = streamer,
max_new_tokens = 1024,
do_sample = True,
top_p = 0.95,
top_k = 1000,
temperature = 1.0,
num_beams = 1,
stopping_criteria = StoppingCriteriaList([stop])
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
partial_message = ""
for new_token in streamer:
if new_token != '<':
partial_message += new_token
yield partial_message
if __name__ == "__main__":
gr.ChatInterface(predict).launch() |