File size: 11,495 Bytes
69a84e8
3781bd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5af086a
69eddf8
5af086a
 
 
 
 
 
 
 
 
 
 
69eddf8
5af086a
 
 
 
 
 
 
 
 
 
69eddf8
5af086a
 
 
 
 
69eddf8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7562c31
3781bd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6319188
3781bd4
919ef1e
 
3781bd4
 
 
 
 
 
 
919ef1e
3781bd4
 
919ef1e
3781bd4
6319188
d2213c1
3781bd4
6319188
3781bd4
6319188
3781bd4
 
 
 
 
6319188
3781bd4
d2213c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6319188
3781bd4
 
 
 
6319188
3781bd4
 
 
 
a876ac5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3781bd4
 
 
 
5af086a
3781bd4
 
5af086a
 
 
 
 
3781bd4
 
 
 
 
 
 
 
 
 
 
 
a876ac5
5af086a
a876ac5
3264ac4
 
a876ac5
3264ac4
5af086a
a876ac5
5af086a
3264ac4
 
a876ac5
3781bd4
 
 
 
 
3264ac4
3781bd4
a876ac5
d2213c1
 
3781bd4
d2213c1
 
 
 
 
3264ac4
3781bd4
 
 
 
 
 
 
 
 
 
 
 
 
d2213c1
3781bd4
 
 
 
 
6319188
3781bd4
 
 
3264ac4
 
 
 
 
 
 
 
5af086a
3264ac4
 
 
3781bd4
 
 
6d0143e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
import gradio as gr 
import os
from groq import Groq
from PyPDF2 import PdfReader
from docx import Document

GROQ_API_KEY = os.environ.get("GROQ_API_KEY")
client = Groq(api_key=GROQ_API_KEY)

CSS = """
.duplicate-button { 
    margin: auto !important; 
    color: white !important; 
    background: black !important; 
    border-radius: 100vh !important;
}
h3, p, h1 { 
    text-align: center; 
    color: white;
}
footer { 
    text-align: center; 
    padding: 10px; 
    width: 100%; 
    background-color: rgba(240, 240, 240, 0.8); 
    z-index: 1000; 
    position: relative; 
    margin-top: 10px; 
    color: black;
}
"""

FOOTER_TEXT = """
<footer>
    <p>If you enjoyed the functionality of the app, please leave a like!<br>
    Check out more on <a href="https://www.linkedin.com/in/girish-wangikar/" target="_blank">LinkedIn</a> | 
    <a href="https://girishwangikar.github.io/Girish_Wangikar_Portfolio.github.io/" target="_blank">Portfolio</a></p>
</footer>
"""

RESUME_ANALYZER_INSTRUCTIONS = """
<div style="background-color: #000000; color: #ffffff; padding: 10px; border-radius: 5px; margin-bottom: 10px;">
    <p><strong>Instructions:</strong></p>
    <ul>
        <li>Upload your resume (PDF or DOCX) in the file upload area.</li>
        <li>If you want to analyze your resume against a specific job description, keep the checkbox checked and enter the job description in the text box.</li>
        <li>If you want a general resume analysis without a job description, uncheck the "Analyze with Job Description" box.</li>
        <li>Click "Analyze Resume" to get your results.</li>
    </ul>
</div>
"""

COVER_LETTER_INSTRUCTIONS = """
<div style="background-color: #000000; color: #ffffff; padding: 10px; border-radius: 5px; margin-bottom: 10px;">
    <p><strong>Instructions for Cover Letter Generation:</strong></p>
    <ol>
        <li>First, go to the "Resume Analyzer" tab.</li>
        <li>Upload your resume and enter the job description there.</li>
        <li>Then, come back to this tab and click "Generate Cover Letter".</li>
    </ol>
</div>
"""

INTERVIEW_QUESTIONS_INSTRUCTIONS = """
<div style="background-color: #000000; color: #ffffff; padding: 10px; border-radius: 5px; margin-bottom: 10px;">
    <p><strong>Instructions for Interview Questions Generation:</strong></p>
    <p>Enter the job description in the text box below and click "Generate Interview Questions".</p>
</div>
"""

# Also update the disclaimer styles to match
COVER_LETTER_DISCLAIMER = """
<p style="font-style: italic; color: #cccccc; background-color: #000000; padding: 10px; border-radius: 5px;">
Disclaimer: This cover letter is generated based on the provided job description and resume. 
It should be carefully reviewed and tailored to your specific needs and the company's requirements before use.
</p>
"""

INTERVIEW_QUESTIONS_DISCLAIMER = """
<p style="font-style: italic; color: #cccccc; background-color: #000000; padding: 10px; border-radius: 5px;">
Disclaimer: These interview questions are generated based on the provided job description. 
They should be reviewed and adjusted to better fit the specific role, company culture, and interview process.
</p>
"""

TITLE = "<h1>πŸ“„ ATS Resume Analyzer πŸ“„</h1>"
PLACEHOLDER = "Chat with AI about your resume and job descriptions..."

def extract_text_from_pdf(pdf_file):
    reader = PdfReader(pdf_file)
    text = ""
    for page in reader.pages:
        text += page.extract_text()
    return text

def extract_text_from_docx(docx_file):
    doc = Document(docx_file)
    text = ""
    for para in doc.paragraphs:
        text += para.text + "\n"
    return text

def generate_response(message: str, system_prompt: str, temperature: float, max_tokens: int):
    conversation = [
        {"role": "system", "content": system_prompt},
        {"role": "user", "content": message}
    ]

    response = client.chat.completions.create(
        model="llama-3.1-8B-Instant",
        messages=conversation,
        temperature=temperature,
        max_tokens=max_tokens,
        stream=False
    )

    return response.choices[0].message.content

    
def analyze_resume_with_job_description(resume_text, job_description, temperature, max_tokens):
    prompt = f"""
    Please analyze the following resume in the context of the job description provided. Strictly check every single line in the job description and analyze the resume for exact matches. Maintain high ATS standards and give scores only to the correct matches. Focus on missing core skills and soft skills. Provide the following details:
    1. The match percentage of the resume to the job description.
    2. A list of missing keywords.
    3. Final thoughts on the resume's overall match with the job description in 3 lines.
    4. Recommendations on how to add the missing keywords and improve the resume in 3-4 points with examples.
    Job Description: {job_description}
    Resume: {resume_text}
    """
    return generate_response(prompt, "You are an expert ATS resume analyzer.", temperature, max_tokens)

def analyze_resume_without_job_description(resume_text, temperature, max_tokens):
    prompt = f"""
    Please analyze the following resume without a specific job description. Provide the following details:
    1. An overall score out of 10 for the resume.
    2. Suggestions for improvements based on the following criteria:
       - Impact (quantification, repetition, verb usage, tenses, responsibilities, spelling & consistency)
       - Brevity (length, bullet points, filler words)
       - Style (buzzwords, dates, contact details, personal pronouns, active voice, consistency)
       - Sections (summary, education, skills, unnecessary sections)
    3. A cumulative assessment of all the above fields.
    4. Recommendations for improving the resume in 3-4 points with examples.

    Resume: {resume_text}
    """
    return generate_response(prompt, "You are an expert ATS resume analyzer.", temperature, max_tokens)


def analyze_resume(resume_text, job_description, with_job_description, temperature, max_tokens):
    if with_job_description:
        return analyze_resume_with_job_description(resume_text, job_description, temperature, max_tokens)
    else:
        return analyze_resume_without_job_description(resume_text, temperature, max_tokens)



def rephrase_text(text, temperature, max_tokens):
    prompt = f"""
    Please rephrase the following text according to ATS standards, including quantifiable measures and improvements where possible. Maintain precise and concise points which will pass ATS screening:
    Original Text: {text}
    """
    return generate_response(prompt, "You are an expert in rephrasing content for ATS optimization.", temperature, max_tokens)

def clear_conversation():
    return [], None


def generate_cover_letter(resume_text, job_description, temperature, max_tokens):
    prompt = f"""
    Using the provided resume and job description, create a compelling cover letter. The cover letter should:
    1. Be tailored to the specific job and company.
    2. Highlight relevant skills and experiences from the resume.
    3. Show enthusiasm for the role and company.
    4. Be professional and concise (about 250-300 words).

    Resume: {resume_text}
    Job Description: {job_description}
    """
    return generate_response(prompt, "You are an expert in writing tailored cover letters.", temperature, max_tokens)

def generate_interview_questions(job_description, temperature, max_tokens):
    prompt = f"""
    Based on the following job description, generate a list of 10 probable interview questions. Include a mix of:
    1. Role-specific technical questions (if applicable)
    2. Behavioral questions related to the required skills
    3. Questions about the candidate's experience and background
    4. Questions to assess cultural fit

    Ensure the questions are tailored to the specific job role and requirements.

    Job Description: {job_description}
    """
    return generate_response(prompt, "You are an expert in creating relevant interview questions based on job descriptions.", temperature, max_tokens)

with gr.Blocks(css=CSS, theme="Nymbo/Nymbo_Theme") as demo:
    gr.HTML(TITLE)

    with gr.Tab("Resume Analyzer"):
        gr.HTML(RESUME_ANALYZER_INSTRUCTIONS)
        with gr.Row():
            with gr.Column():
                with_job_description = gr.Checkbox(
                    label="Analyze with Job Description",
                    value=True,
                    info="Uncheck this box for a general resume analysis without a specific job description."
                )
                job_description = gr.Textbox(label="Job Description", lines=5)
                resume_file = gr.File(label="Upload Resume (PDF or DOCX)")
            with gr.Column():
                resume_content = gr.Textbox(label="Parsed Resume Content", lines=10)
        analyze_btn = gr.Button("Analyze Resume")
        output = gr.Markdown()

    with gr.Tab("Content Rephraser"):
        text_to_rephrase = gr.Textbox(label="Text to Rephrase", lines=5)
        rephrase_btn = gr.Button("Rephrase")
        rephrased_output = gr.Markdown()

    with gr.Tab("Cover Letter Generator"):
        gr.HTML(COVER_LETTER_INSTRUCTIONS)
        gr.HTML(COVER_LETTER_DISCLAIMER)
        generate_cl_btn = gr.Button("Generate Cover Letter")
        cover_letter_output = gr.Markdown()

    with gr.Tab("Interview Questions Generator"):
        gr.HTML(INTERVIEW_QUESTIONS_INSTRUCTIONS)
        gr.HTML(INTERVIEW_QUESTIONS_DISCLAIMER)
        interview_job_description = gr.Textbox(label="Job Description for Interview Questions", lines=5)
        generate_iq_btn = gr.Button("Generate Interview Questions")
        interview_questions_output = gr.Markdown()

    with gr.Accordion("βš™οΈ Parameters", open=False):
        temperature = gr.Slider(
            minimum=0, maximum=1, step=0.1, value=0.5, label="Temperature",
        )
        max_tokens = gr.Slider(
            minimum=50, maximum=1024, step=1, value=1024, label="Max tokens",
        )
        
    def update_job_description_visibility(with_job_description):
        return gr.update(visible=with_job_description)

    with_job_description.change(
        update_job_description_visibility,
        inputs=[with_job_description],
        outputs=[job_description]
    )

    def process_resume(file):
        if file is not None:
            file_type = file.name.split('.')[-1].lower()
            if file_type == 'pdf':
                return extract_text_from_pdf(file.name)
            elif file_type == 'docx':
                return extract_text_from_docx(file.name)
        return ""

    resume_file.upload(process_resume, resume_file, resume_content)

    analyze_btn.click(
        analyze_resume,
        inputs=[resume_content, job_description, with_job_description, temperature, max_tokens],
        outputs=[output]
    )

    rephrase_btn.click(
        rephrase_text,
        inputs=[text_to_rephrase, temperature, max_tokens],
        outputs=[rephrased_output]
    )

    generate_cl_btn.click(
        generate_cover_letter,
        inputs=[resume_content, job_description, temperature, max_tokens],
        outputs=[cover_letter_output]
    )

    generate_iq_btn.click(
        generate_interview_questions,
        inputs=[interview_job_description, temperature, max_tokens],
        outputs=[interview_questions_output]
    )

    gr.HTML(FOOTER_TEXT)

if __name__ == "__main__":
    demo.launch()