girishwangikar commited on
Commit
919ef1e
·
verified ·
1 Parent(s): b0299e5

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -20
app.py CHANGED
@@ -55,30 +55,21 @@ def extract_text_from_docx(docx_file):
55
  text += para.text + "\n"
56
  return text
57
 
58
- def generate_response(message: str, history: list, system_prompt: str, temperature: float = 0.5, max_tokens: int = 512):
59
  conversation = [
60
- {"role": "system", "content": system_prompt}
 
61
  ]
62
- for prompt, answer in history:
63
- conversation.extend([
64
- {"role": "user", "content": prompt},
65
- {"role": "assistant", "content": answer},
66
- ])
67
- conversation.append({"role": "user", "content": message})
68
 
69
  response = client.chat.completions.create(
70
  model="llama-3.1-8B-Instant",
71
  messages=conversation,
72
  temperature=temperature,
73
  max_tokens=max_tokens,
74
- stream=True
75
  )
76
 
77
- partial_message = ""
78
- for chunk in response:
79
- if chunk.choices[0].delta.content is not None:
80
- partial_message += chunk.choices[0].delta.content
81
- yield partial_message
82
 
83
  def analyze_resume(resume_text, job_description):
84
  prompt = f"""
@@ -92,7 +83,7 @@ def analyze_resume(resume_text, job_description):
92
  Job Description: {job_description}
93
  Resume: {resume_text}
94
  """
95
- return generate_response(prompt, [], "You are an expert ATS resume analyzer.")
96
 
97
  def rephrase_text(text):
98
  prompt = f"""
@@ -100,7 +91,7 @@ def rephrase_text(text):
100
 
101
  Original Text: {text}
102
  """
103
- return generate_response(prompt, [], "You are an expert in rephrasing content for ATS optimization.")
104
 
105
  def clear_conversation():
106
  return [], None
@@ -124,10 +115,6 @@ with gr.Blocks(css=CSS, theme="Nymbo/Nymbo_Theme") as demo:
124
  rephrased_output = gr.Markdown()
125
 
126
  with gr.Accordion("⚙️ Parameters", open=False):
127
- system_prompt = gr.Textbox(
128
- value="You are a helpful ATS resume expert, specialized in resume analysis and optimization.",
129
- label="System Prompt",
130
- )
131
  temperature = gr.Slider(
132
  minimum=0, maximum=1, step=0.1, value=0.5, label="Temperature",
133
  )
 
55
  text += para.text + "\n"
56
  return text
57
 
58
+ def generate_response(message: str, system_prompt: str, temperature: float = 0.5, max_tokens: int = 512):
59
  conversation = [
60
+ {"role": "system", "content": system_prompt},
61
+ {"role": "user", "content": message}
62
  ]
 
 
 
 
 
 
63
 
64
  response = client.chat.completions.create(
65
  model="llama-3.1-8B-Instant",
66
  messages=conversation,
67
  temperature=temperature,
68
  max_tokens=max_tokens,
69
+ stream=False
70
  )
71
 
72
+ return response.choices[0].message.content
 
 
 
 
73
 
74
  def analyze_resume(resume_text, job_description):
75
  prompt = f"""
 
83
  Job Description: {job_description}
84
  Resume: {resume_text}
85
  """
86
+ return generate_response(prompt, "You are an expert ATS resume analyzer.")
87
 
88
  def rephrase_text(text):
89
  prompt = f"""
 
91
 
92
  Original Text: {text}
93
  """
94
+ return generate_response(prompt, "You are an expert in rephrasing content for ATS optimization.")
95
 
96
  def clear_conversation():
97
  return [], None
 
115
  rephrased_output = gr.Markdown()
116
 
117
  with gr.Accordion("⚙️ Parameters", open=False):
 
 
 
 
118
  temperature = gr.Slider(
119
  minimum=0, maximum=1, step=0.1, value=0.5, label="Temperature",
120
  )