Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 5,157 Bytes
cc5b602 6f619d7 93fdc72 6386510 3eed0af 51a7d9e 3eed0af 6386510 3eed0af 51a7d9e e6367a7 3eed0af 51a7d9e 6386510 bd34f0b 22d8950 bd34f0b 51a7d9e 6386510 51a7d9e bd34f0b 51a7d9e da59244 3eed0af 93fdc72 4ed884e 3eed0af 010165e 4ed884e e59867b 3eed0af e59867b 3eed0af 7c59d2e 3eed0af 4ed884e c4592e6 3eed0af 285cc01 27dc368 3eed0af b64165b 3eed0af d6a2aad c46b9e7 3eed0af 51a7d9e 6386510 51a7d9e 82b38de 51a7d9e 4ed884e 51a7d9e b64165b 51a7d9e bd34f0b 4ed884e bd34f0b 4ed884e bd34f0b 3eed0af 010165e 3eed0af 51a7d9e 3fb77c6 51a7d9e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
import os
import time
#import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
import gradio as gr
from threading import Thread
MODEL_LIST = ["HuggingFaceTB/SmolLM-1.7B-Instruct", "HuggingFaceTB/SmolLM-135M-Instruct", "HuggingFaceTB/SmolLM-360M-Instruct"]
HF_TOKEN = os.environ.get("HF_TOKEN", None)
TITLE = "<h1><center>SmolLM-Instruct</center></h1>"
PLACEHOLDER = """
<center>
<p>SmolLM is a series of state-of-the-art small language models available in three sizes: 135M, 360M, and 1.7B parameters.</p>
</center>
"""
CSS = """
.duplicate-button {
margin: auto !important;
color: white !important;
background: black !important;
border-radius: 100vh !important;
}
h3 {
text-align: center;
}
"""
# pip install transformers
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cpu" # for GPU usage or "cpu" for CPU usage
tokenizer0 = AutoTokenizer.from_pretrained(MODEL_LIST[0])
model0 = AutoModelForCausalLM.from_pretrained(MODEL_LIST[0]).to(device)
tokenizer1 = AutoTokenizer.from_pretrained(MODEL_LIST[1])
model1 = AutoModelForCausalLM.from_pretrained(MODEL_LIST[1]).to(device)
tokenizer2 = AutoTokenizer.from_pretrained(MODEL_LIST[2])
model2 = AutoModelForCausalLM.from_pretrained(MODEL_LIST[2]).to(device)
#@spaces.GPU()
def stream_chat(
message: str,
history: list,
temperature: float = 0.8,
max_new_tokens: int = 1024,
top_p: float = 1.0,
top_k: int = 20,
penalty: float = 1.2,
choice: str = "135M"
):
print(f'message: {message}')
print(f'history: {history}')
conversation = []
for prompt, answer in history:
conversation.extend([
{"role": "user", "content": prompt},
{"role": "assistant", "content": answer},
])
conversation.append({"role": "user", "content": message})
if choice == "1.7B":
tokenizer = tokenizer0
model = model0
elif choice == "135M":
model = model1
tokenizer = tokenizer1
else:
model = model2
tokenizer = tokenizer2
input_text=tokenizer.apply_chat_template(conversation, tokenize=False)
inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
input_ids=inputs,
max_new_tokens = max_new_tokens,
do_sample = False if temperature == 0 else True,
top_p = top_p,
top_k = top_k,
temperature = temperature,
streamer=streamer,
)
with torch.no_grad():
thread = Thread(target=model.generate, kwargs=generate_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
yield buffer
#print(tokenizer.decode(outputs[0]))
chatbot = gr.Chatbot(height=600, placeholder=PLACEHOLDER)
with gr.Blocks(css=CSS, theme="soft") as demo:
gr.HTML(TITLE)
gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
gr.ChatInterface(
fn=stream_chat,
chatbot=chatbot,
fill_height=True,
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
additional_inputs=[
gr.Slider(
minimum=0,
maximum=1,
step=0.1,
value=0.8,
label="Temperature",
render=False,
),
gr.Slider(
minimum=128,
maximum=8192,
step=1,
value=1024,
label="Max new tokens",
render=False,
),
gr.Slider(
minimum=0.0,
maximum=1.0,
step=0.1,
value=1.0,
label="top_p",
render=False,
),
gr.Slider(
minimum=1,
maximum=20,
step=1,
value=20,
label="top_k",
render=False,
),
gr.Slider(
minimum=0.0,
maximum=2.0,
step=0.1,
value=1.2,
label="Repetition penalty",
render=False,
),
gr.Radio(
["135M", "360M", "1.7B"],
value="135M",
label="Load Model",
render=False,
),
],
examples=[
["Help me study vocabulary: write a sentence for me to fill in the blank, and I'll try to pick the correct option."],
["What are 5 creative things I could do with my kids' art? I don't want to throw them away, but it's also so much clutter."],
["Tell me a random fun fact about the Roman Empire."],
["Show me a code snippet of a website's sticky header in CSS and JavaScript."],
],
cache_examples=False,
)
if __name__ == "__main__":
demo.launch()
|