Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
import os
|
2 |
import time
|
|
|
3 |
import torch
|
4 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
5 |
import gradio as gr
|
@@ -9,14 +10,14 @@ HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
|
9 |
MODEL_ID = os.environ.get("MODEL_ID", None)
|
10 |
MODEL_NAME = MODEL_ID.split("/")[-1]
|
11 |
|
12 |
-
TITLE = "<h1><center>MiniCPM-1B-chat</center></h1>"
|
13 |
|
14 |
DESCRIPTION = f"""
|
15 |
<h3>MODEL NOW: <a href="https://hf.co/{MODEL_ID}">{MODEL_NAME}</a></h3>
|
16 |
"""
|
17 |
PLACEHOLDER = """
|
18 |
<center>
|
19 |
-
<p>MiniCPM is an End-Size LLM
|
20 |
</center>
|
21 |
"""
|
22 |
|
@@ -36,11 +37,12 @@ h3 {
|
|
36 |
model = AutoModelForCausalLM.from_pretrained(
|
37 |
MODEL_ID,
|
38 |
torch_dtype=torch.bfloat16,
|
|
|
39 |
low_cpu_mem_usage=True,
|
40 |
trust_remote_code=True)
|
41 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, torch_dtype=torch.bfloat16)
|
42 |
|
43 |
-
|
44 |
def stream_chat(
|
45 |
message: str,
|
46 |
history: list,
|
@@ -52,6 +54,7 @@ def stream_chat(
|
|
52 |
):
|
53 |
print(f'message: {message}')
|
54 |
print(f'history: {history}')
|
|
|
55 |
resp, history = model.chat(
|
56 |
tokenizer,
|
57 |
query = message,
|
@@ -124,7 +127,7 @@ with gr.Blocks(css=CSS, theme="soft") as demo:
|
|
124 |
["Tell me a random fun fact about the Roman Empire."],
|
125 |
["Show me a code snippet of a website's sticky header in CSS and JavaScript."],
|
126 |
],
|
127 |
-
cache_examples=
|
128 |
)
|
129 |
|
130 |
|
|
|
1 |
import os
|
2 |
import time
|
3 |
+
import spaces
|
4 |
import torch
|
5 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
6 |
import gradio as gr
|
|
|
10 |
MODEL_ID = os.environ.get("MODEL_ID", None)
|
11 |
MODEL_NAME = MODEL_ID.split("/")[-1]
|
12 |
|
13 |
+
TITLE = "<h1><center>MiniCPM-S-1B-chat</center></h1>"
|
14 |
|
15 |
DESCRIPTION = f"""
|
16 |
<h3>MODEL NOW: <a href="https://hf.co/{MODEL_ID}">{MODEL_NAME}</a></h3>
|
17 |
"""
|
18 |
PLACEHOLDER = """
|
19 |
<center>
|
20 |
+
<p>MiniCPM is an End-Size LLM with only 1.2B parameters excluding embeddings.</p>
|
21 |
</center>
|
22 |
"""
|
23 |
|
|
|
37 |
model = AutoModelForCausalLM.from_pretrained(
|
38 |
MODEL_ID,
|
39 |
torch_dtype=torch.bfloat16,
|
40 |
+
device_map='auto',
|
41 |
low_cpu_mem_usage=True,
|
42 |
trust_remote_code=True)
|
43 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, torch_dtype=torch.bfloat16)
|
44 |
|
45 |
+
@spaces.GPU()
|
46 |
def stream_chat(
|
47 |
message: str,
|
48 |
history: list,
|
|
|
54 |
):
|
55 |
print(f'message: {message}')
|
56 |
print(f'history: {history}')
|
57 |
+
torch.manual_seed(0)
|
58 |
resp, history = model.chat(
|
59 |
tokenizer,
|
60 |
query = message,
|
|
|
127 |
["Tell me a random fun fact about the Roman Empire."],
|
128 |
["Show me a code snippet of a website's sticky header in CSS and JavaScript."],
|
129 |
],
|
130 |
+
cache_examples=False,
|
131 |
)
|
132 |
|
133 |
|