File size: 9,636 Bytes
07d5247
058e9d8
 
6d70521
058e9d8
01807fb
9d9e3ec
ed724f7
3b633b6
3837c03
3459d34
 
b4bce2e
07d5247
fa37ad2
6b2dfd8
2c339b8
1d66cba
 
 
 
fa37ad2
 
 
b4bce2e
fa37ad2
 
 
b4bce2e
0389115
 
573943b
1d66cba
 
 
 
fa37ad2
 
 
b4bce2e
fa37ad2
 
 
b4bce2e
fd0860d
0521099
 
1d66cba
 
 
 
573943b
 
 
b4bce2e
573943b
 
 
b4bce2e
0521099
 
2c339b8
1d66cba
 
 
 
0521099
 
 
 
 
 
 
 
4824429
 
2c339b8
4824429
 
 
 
 
 
 
 
 
 
 
 
80ba029
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81dec84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6c9a76
058e9d8
81dec84
fa37ad2
a2749d1
b32943f
 
b1f7543
ed810ef
70733c7
ebec2b0
 
d6c9a76
81dec84
26d38a8
81dec84
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import gradio as gr
import torch
import numpy as np
import modin.pandas as pd
from PIL import Image
from diffusers import DiffusionPipeline, StableDiffusionLatentUpscalePipeline

device = 'cuda' if torch.cuda.is_available() else 'cpu'

refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True, torch_dtype=torch.float16, variant="fp16") if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0")
refiner.enable_xformers_memory_efficient_attention()
refiner = refiner.to(device)
torch.cuda.empty_cache()

def genie (Model, Prompt, negative_prompt, height, width, scale, steps, seed, upscale, high_noise_frac):
    generator = np.random.seed(0) if seed == 0 else torch.manual_seed(seed)
    if Model == "PhotoReal":
        pipe = DiffusionPipeline.from_pretrained("circulus/canvers-real-v3.8.1", torch_dtype=torch.float16, safety_checker=None) if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("circulus/canvers-real-v3.8.1")
        pipe = pipe.to(device)
        pipe.enable_xformers_memory_efficient_attention()
        torch.cuda.empty_cache()
        if upscale == "Yes":
            int_image = pipe(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images
            image = refiner(Prompt, negative_prompt=negative_prompt, image=int_image, denoising_start=high_noise_frac).images[0]
            torch.cuda.empty_cache()
            return image
        else:
            image = pipe(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
            torch.cuda.empty_cache()
            return image
    
    if Model == "Anime":
        anime = DiffusionPipeline.from_pretrained("circulus/canvers-anime-v3.8.1", torch_dtype=torch.float16, safety_checker=None) if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("circulus/canvers-anime-v3.8.1")
        anime = anime.to(device)
        anime.enable_xformers_memory_efficient_attention()
        torch.cuda.empty_cache()
        if upscale == "Yes":
            int_image = anime(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images
            image = refiner(Prompt, negative_prompt=negative_prompt, image=int_image, denoising_start=high_noise_frac).images[0]
            torch.cuda.empty_cache()
            return image
        else:
            image = anime(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
            torch.cuda.empty_cache()
            return image
            
    if Model == "Disney":
        disney = DiffusionPipeline.from_pretrained("circulus/canvers-disney-v3.8.1", torch_dtype=torch.float16, safety_checker=None) if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("circulus/canvers-disney-v3.8.1")
        disney = disney.to(device)
        disney.enable_xformers_memory_efficient_attention()
        torch.cuda.empty_cache()
        if upscale == "Yes":
            int_image = disney(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images
            image = refiner(Prompt, negative_prompt=negative_prompt, image=int_image, denoising_start=high_noise_frac).images[0]
            torch.cuda.empty_cache()
            return image
        else:
            image = disney(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
            torch.cuda.empty_cache()
            return image
            
    if Model == "StoryBook":
        story = DiffusionPipeline.from_pretrained("circulus/canvers-story-v3.8.1", torch_dtype=torch.float16, safety_checker=None) if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("circulus/canvers-story-v3.8.1")
        story = story.to(device)
        story.enable_xformers_memory_efficient_attention()
        torch.cuda.empty_cache()
        if upscale == "Yes":
            int_image = story(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images
            image = refiner(Prompt, negative_prompt=negative_prompt, image=int_image, denoising_start=high_noise_frac).images[0]
            torch.cuda.empty_cache()
            return image
        else:
            image = story(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
            torch.cuda.empty_cache()
            return image

    if Model == "SemiReal":
        semi = DiffusionPipeline.from_pretrained("circulus/canvers-semi-v3.8.1", torch_dtype=torch.float16, safety_checker=None) if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("circulus/canvers-semi-v3.8.1")
        semi = semi.to(device)
        semi.enable_xformers_memory_efficient_attention()
        torch.cuda.empty_cache()
        if upscale == "Yes":
            int_image = semi(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images
            image = refiner(Prompt, negative_prompt=negative_prompt, image=int_image, denoising_start=high_noise_frac).images[0]
            torch.cuda.empty_cache()
            return image
        else:
            image = semi(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
            torch.cuda.empty_cache()
            return image

    if Model == "Animagine XL 3.0":
        animagine = DiffusionPipeline.from_pretrained("cagliostrolab/animagine-xl-3.0", torch_dtype=torch.float16, safety_checker=None) if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("cagliostrolab/animagine-xl-3.0")
        animagine = animagine.to(device)
        animagine.enable_xformers_memory_efficient_attention()
        torch.cuda.empty_cache()
        if upscale == "Yes":
            int_image = animagine(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images
            image = refiner(Prompt, negative_prompt=negative_prompt, image=int_image, denoising_start=high_noise_frac).images[0]
            torch.cuda.empty_cache()
            return image
        else:
            image = animagine(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
            torch.cuda.empty_cache()
            return image

    if Model == "SDXL 1.0":
        sdxl = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
        sdxl = sdxl.to(device)   
        sdxl.enable_xformers_memory_efficient_attention()
        torch.cuda.empty_cache()
        if upscale == "Yes":
            int_image = sdxl(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images
            image = refiner(Prompt, negative_prompt=negative_prompt, image=int_image, denoising_start=high_noise_frac).images[0]
            torch.cuda.empty_cache()
            return image
        else:
            image = sdxl(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
            torch.cuda.empty_cache()
        
    return image
    
gr.Interface(fn=genie, inputs=[gr.Radio(['PhotoReal', 'Anime', 'Disney', 'StoryBook', 'SemiReal', 'Animagine XL 3.0', 'SDXL 1.0'], value='PhotoReal', label='Choose Model'),
                               gr.Textbox(label='What you want the AI to generate. 77 Token Limit.'), 
                               gr.Textbox(label='What you Do Not want the AI to generate. 77 Token Limit'),
                               gr.Slider(512, 1024, 768, step=128, label='Height'),
                               gr.Slider(512, 1024, 768, step=128, label='Width'),
                               gr.Slider(1, maximum=9, value=5, step=.25, label='Guidance Scale'), 
                               gr.Slider(25, maximum=100, value=50, step=25, label='Number of Iterations'), 
                               gr.Slider(minimum=0, step=1, maximum=9999999999999999, randomize=True, label='Seed: 0 is Random'), 
                               gr.Radio(["Yes", "No"], label='SDXL 1.0 Refiner: Use if the Image has too much Noise', value='No'),
                               gr.Slider(minimum=.9, maximum=.99, value=.95, step=.01, label='Refiner Denoise Start %')],
             outputs=gr.Image(label='Generated Image'), 
             title="Manju Dream Booth V1.5 with SDXL 1.0 Refiner - GPU", 
             description="<br><br><b/>Warning: This Demo is capable of producing NSFW content.", 
             article = "If You Enjoyed this Demo and would like to Donate, you can send any amount to any of these Wallets. <br><br>BTC: bc1qzdm9j73mj8ucwwtsjx4x4ylyfvr6kp7svzjn84 <br>BTC2: 3LWRoKYx6bCLnUrKEdnPo3FCSPQUSFDjFP <br>DOGE: DK6LRc4gfefdCTRk9xPD239N31jh9GjKez <br>SHIB (BEP20): 0xbE8f2f3B71DFEB84E5F7E3aae1909d60658aB891 <br>PayPal: https://www.paypal.me/ManjushriBodhisattva <br>ETH: 0xbE8f2f3B71DFEB84E5F7E3aae1909d60658aB891 <br>Code Monkey: <a href=\"https://huggingface.co/Manjushri\">Manjushri</a>").launch(debug=True, max_threads=80)