Update app.py
Browse filesAdding story too?
app.py
CHANGED
@@ -22,6 +22,11 @@ disney = disney.to(device)
|
|
22 |
disney.enable_xformers_memory_efficient_attention()
|
23 |
torch.cuda.empty_cache()
|
24 |
|
|
|
|
|
|
|
|
|
|
|
25 |
refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True, torch_dtype=torch.float16, variant="fp16") if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0")
|
26 |
refiner.enable_xformers_memory_efficient_attention()
|
27 |
refiner = refiner.to(device)
|
@@ -50,7 +55,8 @@ def genie (Model, Prompt, negative_prompt, height, width, scale, steps, seed, up
|
|
50 |
image = anime(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
|
51 |
torch.cuda.empty_cache()
|
52 |
return image
|
53 |
-
|
|
|
54 |
if upscale == "Yes":
|
55 |
int_image = disney(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images
|
56 |
image = refiner(Prompt, negative_prompt=negative_prompt, image=int_image, denoising_start=high_noise_frac).images[0]
|
@@ -59,9 +65,21 @@ def genie (Model, Prompt, negative_prompt, height, width, scale, steps, seed, up
|
|
59 |
else:
|
60 |
image = disney(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
|
61 |
torch.cuda.empty_cache()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
return image
|
63 |
|
64 |
-
gr.Interface(fn=genie, inputs=[gr.Radio(['Real', 'Anime', 'Disney'], value='Real', label='Choose Canvers Model'),
|
65 |
gr.Textbox(label='What you want the AI to generate. 77 Token Limit.'),
|
66 |
gr.Textbox(label='What you Do Not want the AI to generate. 77 Token Limit'),
|
67 |
gr.Slider(512, 1024, 768, step=128, label='Height'),
|
|
|
22 |
disney.enable_xformers_memory_efficient_attention()
|
23 |
torch.cuda.empty_cache()
|
24 |
|
25 |
+
story = DiffusionPipeline.from_pretrained("circulus/canvers-story-v3.8.1", torch_dtype=torch.float16, safety_checker=None) if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("circulus/canvers-story-v3.8.1")
|
26 |
+
story = story.to(device)
|
27 |
+
story.enable_xformers_memory_efficient_attention()
|
28 |
+
torch.cuda.empty_cache()
|
29 |
+
|
30 |
refiner = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", use_safetensors=True, torch_dtype=torch.float16, variant="fp16") if torch.cuda.is_available() else DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0")
|
31 |
refiner.enable_xformers_memory_efficient_attention()
|
32 |
refiner = refiner.to(device)
|
|
|
55 |
image = anime(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
|
56 |
torch.cuda.empty_cache()
|
57 |
return image
|
58 |
+
|
59 |
+
if Model == "Disney":
|
60 |
if upscale == "Yes":
|
61 |
int_image = disney(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images
|
62 |
image = refiner(Prompt, negative_prompt=negative_prompt, image=int_image, denoising_start=high_noise_frac).images[0]
|
|
|
65 |
else:
|
66 |
image = disney(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
|
67 |
torch.cuda.empty_cache()
|
68 |
+
return image
|
69 |
+
|
70 |
+
if Model == "Story":
|
71 |
+
if upscale == "Yes":
|
72 |
+
int_image = story(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images
|
73 |
+
image = refiner(Prompt, negative_prompt=negative_prompt, image=int_image, denoising_start=high_noise_frac).images[0]
|
74 |
+
torch.cuda.empty_cache()
|
75 |
+
return image
|
76 |
+
else:
|
77 |
+
image = story(Prompt, negative_prompt=negative_prompt, height=height, width=width, num_inference_steps=steps, guidance_scale=scale).images[0]
|
78 |
+
torch.cuda.empty_cache()
|
79 |
+
|
80 |
return image
|
81 |
|
82 |
+
gr.Interface(fn=genie, inputs=[gr.Radio(['Real', 'Anime', 'Disney', 'Story'], value='Real', label='Choose Canvers Model'),
|
83 |
gr.Textbox(label='What you want the AI to generate. 77 Token Limit.'),
|
84 |
gr.Textbox(label='What you Do Not want the AI to generate. 77 Token Limit'),
|
85 |
gr.Slider(512, 1024, 768, step=128, label='Height'),
|