Spaces:
Build error
Build error
# Copyright (c) OpenMMLab. All rights reserved. | |
import torch | |
from torch.utils.data import DistributedSampler as _DistributedSampler | |
class DistributedSampler(_DistributedSampler): | |
"""DistributedSampler inheriting from | |
`torch.utils.data.DistributedSampler`. | |
In pytorch of lower versions, there is no `shuffle` argument. This child | |
class will port one to DistributedSampler. | |
""" | |
def __init__(self, | |
dataset, | |
num_replicas=None, | |
rank=None, | |
shuffle=True, | |
seed=0): | |
super().__init__( | |
dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle) | |
# for the compatibility from PyTorch 1.3+ | |
self.seed = seed if seed is not None else 0 | |
def __iter__(self): | |
"""Deterministically shuffle based on epoch.""" | |
if self.shuffle: | |
g = torch.Generator() | |
g.manual_seed(self.epoch + self.seed) | |
indices = torch.randperm(len(self.dataset), generator=g).tolist() | |
else: | |
indices = torch.arange(len(self.dataset)).tolist() | |
# add extra samples to make it evenly divisible | |
indices += indices[:(self.total_size - len(indices))] | |
assert len(indices) == self.total_size | |
# subsample | |
indices = indices[self.rank:self.total_size:self.num_replicas] | |
assert len(indices) == self.num_samples | |
return iter(indices) | |