# Copyright (c) OpenMMLab. All rights reserved. import torch from torch.utils.data import DistributedSampler as _DistributedSampler class DistributedSampler(_DistributedSampler): """DistributedSampler inheriting from `torch.utils.data.DistributedSampler`. In pytorch of lower versions, there is no `shuffle` argument. This child class will port one to DistributedSampler. """ def __init__(self, dataset, num_replicas=None, rank=None, shuffle=True, seed=0): super().__init__( dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle) # for the compatibility from PyTorch 1.3+ self.seed = seed if seed is not None else 0 def __iter__(self): """Deterministically shuffle based on epoch.""" if self.shuffle: g = torch.Generator() g.manual_seed(self.epoch + self.seed) indices = torch.randperm(len(self.dataset), generator=g).tolist() else: indices = torch.arange(len(self.dataset)).tolist() # add extra samples to make it evenly divisible indices += indices[:(self.total_size - len(indices))] assert len(indices) == self.total_size # subsample indices = indices[self.rank:self.total_size:self.num_replicas] assert len(indices) == self.num_samples return iter(indices)