Spaces:
Build error
Build error
# Copyright (c) OpenMMLab. All rights reserved. | |
import numpy as np | |
from .camera_base import CAMERAS, SingleCameraBase | |
class SimpleCamera(SingleCameraBase): | |
"""Camera model to calculate coordinate transformation with given | |
intrinsic/extrinsic camera parameters. | |
Note: | |
The keypoint coordinate should be an np.ndarray with a shape of | |
[...,J, C] where J is the keypoint number of an instance, and C is | |
the coordinate dimension. For example: | |
[J, C]: shape of joint coordinates of a person with J joints. | |
[N, J, C]: shape of a batch of person joint coordinates. | |
[N, T, J, C]: shape of a batch of pose sequences. | |
Args: | |
param (dict): camera parameters including: | |
- R: 3x3, camera rotation matrix (camera-to-world) | |
- T: 3x1, camera translation (camera-to-world) | |
- K: (optional) 2x3, camera intrinsic matrix | |
- k: (optional) nx1, camera radial distortion coefficients | |
- p: (optional) mx1, camera tangential distortion coefficients | |
- f: (optional) 2x1, camera focal length | |
- c: (optional) 2x1, camera center | |
if K is not provided, it will be calculated from f and c. | |
Methods: | |
world_to_camera: Project points from world coordinates to camera | |
coordinates | |
camera_to_pixel: Project points from camera coordinates to pixel | |
coordinates | |
world_to_pixel: Project points from world coordinates to pixel | |
coordinates | |
""" | |
def __init__(self, param): | |
self.param = {} | |
# extrinsic param | |
R = np.array(param['R'], dtype=np.float32) | |
T = np.array(param['T'], dtype=np.float32) | |
assert R.shape == (3, 3) | |
assert T.shape == (3, 1) | |
# The camera matrices are transposed in advance because the joint | |
# coordinates are stored as row vectors. | |
self.param['R_c2w'] = R.T | |
self.param['T_c2w'] = T.T | |
self.param['R_w2c'] = R | |
self.param['T_w2c'] = -self.param['T_c2w'] @ self.param['R_w2c'] | |
# intrinsic param | |
if 'K' in param: | |
K = np.array(param['K'], dtype=np.float32) | |
assert K.shape == (2, 3) | |
self.param['K'] = K.T | |
self.param['f'] = np.array([K[0, 0], K[1, 1]])[:, np.newaxis] | |
self.param['c'] = np.array([K[0, 2], K[1, 2]])[:, np.newaxis] | |
elif 'f' in param and 'c' in param: | |
f = np.array(param['f'], dtype=np.float32) | |
c = np.array(param['c'], dtype=np.float32) | |
assert f.shape == (2, 1) | |
assert c.shape == (2, 1) | |
self.param['K'] = np.concatenate((np.diagflat(f), c), axis=-1).T | |
self.param['f'] = f | |
self.param['c'] = c | |
else: | |
raise ValueError('Camera intrinsic parameters are missing. ' | |
'Either "K" or "f"&"c" should be provided.') | |
# distortion param | |
if 'k' in param and 'p' in param: | |
self.undistortion = True | |
self.param['k'] = np.array(param['k'], dtype=np.float32).flatten() | |
self.param['p'] = np.array(param['p'], dtype=np.float32).flatten() | |
assert self.param['k'].size in {3, 6} | |
assert self.param['p'].size == 2 | |
else: | |
self.undistortion = False | |
def world_to_camera(self, X): | |
assert isinstance(X, np.ndarray) | |
assert X.ndim >= 2 and X.shape[-1] == 3 | |
return X @ self.param['R_w2c'] + self.param['T_w2c'] | |
def camera_to_world(self, X): | |
assert isinstance(X, np.ndarray) | |
assert X.ndim >= 2 and X.shape[-1] == 3 | |
return X @ self.param['R_c2w'] + self.param['T_c2w'] | |
def camera_to_pixel(self, X): | |
assert isinstance(X, np.ndarray) | |
assert X.ndim >= 2 and X.shape[-1] == 3 | |
_X = X / X[..., 2:] | |
if self.undistortion: | |
k = self.param['k'] | |
p = self.param['p'] | |
_X_2d = _X[..., :2] | |
r2 = (_X_2d**2).sum(-1) | |
radial = 1 + sum(ki * r2**(i + 1) for i, ki in enumerate(k[:3])) | |
if k.size == 6: | |
radial /= 1 + sum( | |
(ki * r2**(i + 1) for i, ki in enumerate(k[3:]))) | |
tangential = 2 * (p[1] * _X[..., 0] + p[0] * _X[..., 1]) | |
_X[..., :2] = _X_2d * (radial + tangential)[..., None] + np.outer( | |
r2, p[::-1]).reshape(_X_2d.shape) | |
return _X @ self.param['K'] | |
def pixel_to_camera(self, X): | |
assert isinstance(X, np.ndarray) | |
assert X.ndim >= 2 and X.shape[-1] == 3 | |
_X = X.copy() | |
_X[:, :2] = (X[:, :2] - self.param['c'].T) / self.param['f'].T * X[:, | |
[2]] | |
return _X | |