Spaces:
Build error
Build error
# Copyright (c) OpenMMLab. All rights reserved. | |
import os | |
import warnings | |
import mmcv | |
import numpy as np | |
import torch | |
from mmcv.parallel import collate, scatter | |
from mmcv.runner import load_checkpoint | |
from PIL import Image | |
from mmpose.core.post_processing import oks_nms | |
from mmpose.datasets.dataset_info import DatasetInfo | |
from mmpose.datasets.pipelines import Compose | |
from mmpose.models import build_posenet | |
from mmpose.utils.hooks import OutputHook | |
os.environ['KMP_DUPLICATE_LIB_OK'] = 'TRUE' | |
def init_pose_model(config, checkpoint=None, device='cuda:0'): | |
"""Initialize a pose model from config file. | |
Args: | |
config (str or :obj:`mmcv.Config`): Config file path or the config | |
object. | |
checkpoint (str, optional): Checkpoint path. If left as None, the model | |
will not load any weights. | |
Returns: | |
nn.Module: The constructed detector. | |
""" | |
if isinstance(config, str): | |
config = mmcv.Config.fromfile(config) | |
elif not isinstance(config, mmcv.Config): | |
raise TypeError('config must be a filename or Config object, ' | |
f'but got {type(config)}') | |
config.model.pretrained = None | |
model = build_posenet(config.model) | |
if checkpoint is not None: | |
# load model checkpoint | |
load_checkpoint(model, checkpoint, map_location='cpu') | |
# save the config in the model for convenience | |
model.cfg = config | |
model.to(device) | |
model.eval() | |
return model | |
def _xyxy2xywh(bbox_xyxy): | |
"""Transform the bbox format from x1y1x2y2 to xywh. | |
Args: | |
bbox_xyxy (np.ndarray): Bounding boxes (with scores), shaped (n, 4) or | |
(n, 5). (left, top, right, bottom, [score]) | |
Returns: | |
np.ndarray: Bounding boxes (with scores), | |
shaped (n, 4) or (n, 5). (left, top, width, height, [score]) | |
""" | |
bbox_xywh = bbox_xyxy.copy() | |
bbox_xywh[:, 2] = bbox_xywh[:, 2] - bbox_xywh[:, 0] + 1 | |
bbox_xywh[:, 3] = bbox_xywh[:, 3] - bbox_xywh[:, 1] + 1 | |
return bbox_xywh | |
def _xywh2xyxy(bbox_xywh): | |
"""Transform the bbox format from xywh to x1y1x2y2. | |
Args: | |
bbox_xywh (ndarray): Bounding boxes (with scores), | |
shaped (n, 4) or (n, 5). (left, top, width, height, [score]) | |
Returns: | |
np.ndarray: Bounding boxes (with scores), shaped (n, 4) or | |
(n, 5). (left, top, right, bottom, [score]) | |
""" | |
bbox_xyxy = bbox_xywh.copy() | |
bbox_xyxy[:, 2] = bbox_xyxy[:, 2] + bbox_xyxy[:, 0] - 1 | |
bbox_xyxy[:, 3] = bbox_xyxy[:, 3] + bbox_xyxy[:, 1] - 1 | |
return bbox_xyxy | |
def _box2cs(cfg, box): | |
"""This encodes bbox(x,y,w,h) into (center, scale) | |
Args: | |
x, y, w, h | |
Returns: | |
tuple: A tuple containing center and scale. | |
- np.ndarray[float32](2,): Center of the bbox (x, y). | |
- np.ndarray[float32](2,): Scale of the bbox w & h. | |
""" | |
x, y, w, h = box[:4] | |
input_size = cfg.data_cfg['image_size'] | |
aspect_ratio = input_size[0] / input_size[1] | |
center = np.array([x + w * 0.5, y + h * 0.5], dtype=np.float32) | |
if w > aspect_ratio * h: | |
h = w * 1.0 / aspect_ratio | |
elif w < aspect_ratio * h: | |
w = h * aspect_ratio | |
# pixel std is 200.0 | |
scale = np.array([w / 200.0, h / 200.0], dtype=np.float32) | |
scale = scale * 1.25 | |
return center, scale | |
def _inference_single_pose_model(model, | |
img_or_path, | |
bboxes, | |
dataset='TopDownCocoDataset', | |
dataset_info=None, | |
return_heatmap=False): | |
"""Inference human bounding boxes. | |
Note: | |
- num_bboxes: N | |
- num_keypoints: K | |
Args: | |
model (nn.Module): The loaded pose model. | |
img_or_path (str | np.ndarray): Image filename or loaded image. | |
bboxes (list | np.ndarray): All bounding boxes (with scores), | |
shaped (N, 4) or (N, 5). (left, top, width, height, [score]) | |
where N is number of bounding boxes. | |
dataset (str): Dataset name. Deprecated. | |
dataset_info (DatasetInfo): A class containing all dataset info. | |
outputs (list[str] | tuple[str]): Names of layers whose output is | |
to be returned, default: None | |
Returns: | |
ndarray[NxKx3]: Predicted pose x, y, score. | |
heatmap[N, K, H, W]: Model output heatmap. | |
""" | |
cfg = model.cfg | |
device = next(model.parameters()).device | |
if device.type == 'cpu': | |
device = -1 | |
# build the data pipeline | |
test_pipeline = Compose(cfg.test_pipeline) | |
assert len(bboxes[0]) in [4, 5] | |
if dataset_info is not None: | |
dataset_name = dataset_info.dataset_name | |
flip_pairs = dataset_info.flip_pairs | |
else: | |
warnings.warn( | |
'dataset is deprecated.' | |
'Please set `dataset_info` in the config.' | |
'Check https://github.com/open-mmlab/mmpose/pull/663 for details.', | |
DeprecationWarning) | |
# TODO: These will be removed in the later versions. | |
if dataset in ('TopDownCocoDataset', 'TopDownOCHumanDataset', | |
'AnimalMacaqueDataset'): | |
flip_pairs = [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12], | |
[13, 14], [15, 16]] | |
elif dataset == 'TopDownCocoWholeBodyDataset': | |
body = [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12], | |
[13, 14], [15, 16]] | |
foot = [[17, 20], [18, 21], [19, 22]] | |
face = [[23, 39], [24, 38], [25, 37], [26, 36], [27, 35], [28, 34], | |
[29, 33], [30, 32], [40, 49], [41, 48], [42, 47], [43, 46], | |
[44, 45], [54, 58], [55, 57], [59, 68], [60, 67], [61, 66], | |
[62, 65], [63, 70], [64, 69], [71, 77], [72, 76], [73, 75], | |
[78, 82], [79, 81], [83, 87], [84, 86], [88, 90]] | |
hand = [[91, 112], [92, 113], [93, 114], [94, 115], [95, 116], | |
[96, 117], [97, 118], [98, 119], [99, 120], [100, 121], | |
[101, 122], [102, 123], [103, 124], [104, 125], [105, 126], | |
[106, 127], [107, 128], [108, 129], [109, 130], [110, 131], | |
[111, 132]] | |
flip_pairs = body + foot + face + hand | |
elif dataset == 'TopDownAicDataset': | |
flip_pairs = [[0, 3], [1, 4], [2, 5], [6, 9], [7, 10], [8, 11]] | |
elif dataset == 'TopDownMpiiDataset': | |
flip_pairs = [[0, 5], [1, 4], [2, 3], [10, 15], [11, 14], [12, 13]] | |
elif dataset == 'TopDownMpiiTrbDataset': | |
flip_pairs = [[0, 1], [2, 3], [4, 5], [6, 7], [8, 9], [10, 11], | |
[14, 15], [16, 22], [28, 34], [17, 23], [29, 35], | |
[18, 24], [30, 36], [19, 25], [31, 37], [20, 26], | |
[32, 38], [21, 27], [33, 39]] | |
elif dataset in ('OneHand10KDataset', 'FreiHandDataset', | |
'PanopticDataset', 'InterHand2DDataset'): | |
flip_pairs = [] | |
elif dataset in 'Face300WDataset': | |
flip_pairs = [[0, 16], [1, 15], [2, 14], [3, 13], [4, 12], [5, 11], | |
[6, 10], [7, 9], [17, 26], [18, 25], [19, 24], | |
[20, 23], [21, 22], [31, 35], [32, 34], [36, 45], | |
[37, 44], [38, 43], [39, 42], [40, 47], [41, 46], | |
[48, 54], [49, 53], [50, 52], [61, 63], [60, 64], | |
[67, 65], [58, 56], [59, 55]] | |
elif dataset in 'FaceAFLWDataset': | |
flip_pairs = [[0, 5], [1, 4], [2, 3], [6, 11], [7, 10], [8, 9], | |
[12, 14], [15, 17]] | |
elif dataset in 'FaceCOFWDataset': | |
flip_pairs = [[0, 1], [4, 6], [2, 3], [5, 7], [8, 9], [10, 11], | |
[12, 14], [16, 17], [13, 15], [18, 19], [22, 23]] | |
elif dataset in 'FaceWFLWDataset': | |
flip_pairs = [[0, 32], [1, 31], [2, 30], [3, 29], [4, 28], [5, 27], | |
[6, 26], [7, 25], [8, 24], [9, 23], [10, 22], | |
[11, 21], [12, 20], [13, 19], [14, 18], [15, 17], | |
[33, 46], [34, 45], [35, 44], [36, 43], [37, 42], | |
[38, 50], [39, 49], [40, 48], [41, 47], [60, 72], | |
[61, 71], [62, 70], [63, 69], [64, 68], [65, 75], | |
[66, 74], [67, 73], [55, 59], [56, 58], [76, 82], | |
[77, 81], [78, 80], [87, 83], [86, 84], [88, 92], | |
[89, 91], [95, 93], [96, 97]] | |
elif dataset in 'AnimalFlyDataset': | |
flip_pairs = [[1, 2], [6, 18], [7, 19], [8, 20], [9, 21], [10, 22], | |
[11, 23], [12, 24], [13, 25], [14, 26], [15, 27], | |
[16, 28], [17, 29], [30, 31]] | |
elif dataset in 'AnimalHorse10Dataset': | |
flip_pairs = [] | |
elif dataset in 'AnimalLocustDataset': | |
flip_pairs = [[5, 20], [6, 21], [7, 22], [8, 23], [9, 24], | |
[10, 25], [11, 26], [12, 27], [13, 28], [14, 29], | |
[15, 30], [16, 31], [17, 32], [18, 33], [19, 34]] | |
elif dataset in 'AnimalZebraDataset': | |
flip_pairs = [[3, 4], [5, 6]] | |
elif dataset in 'AnimalPoseDataset': | |
flip_pairs = [[0, 1], [2, 3], [8, 9], [10, 11], [12, 13], [14, 15], | |
[16, 17], [18, 19]] | |
else: | |
raise NotImplementedError() | |
dataset_name = dataset | |
batch_data = [] | |
for bbox in bboxes: | |
center, scale = _box2cs(cfg, bbox) | |
# prepare data | |
data = { | |
'center': | |
center, | |
'scale': | |
scale, | |
'bbox_score': | |
bbox[4] if len(bbox) == 5 else 1, | |
'bbox_id': | |
0, # need to be assigned if batch_size > 1 | |
'dataset': | |
dataset_name, | |
'joints_3d': | |
np.zeros((cfg.data_cfg.num_joints, 3), dtype=np.float32), | |
'joints_3d_visible': | |
np.zeros((cfg.data_cfg.num_joints, 3), dtype=np.float32), | |
'rotation': | |
0, | |
'ann_info': { | |
'image_size': np.array(cfg.data_cfg['image_size']), | |
'num_joints': cfg.data_cfg['num_joints'], | |
'flip_pairs': flip_pairs | |
} | |
} | |
if isinstance(img_or_path, np.ndarray): | |
data['img'] = img_or_path | |
else: | |
data['image_file'] = img_or_path | |
data = test_pipeline(data) | |
batch_data.append(data) | |
batch_data = collate(batch_data, samples_per_gpu=len(batch_data)) | |
batch_data = scatter(batch_data, [device])[0] | |
# forward the model | |
with torch.no_grad(): | |
result = model( | |
img=batch_data['img'], | |
img_metas=batch_data['img_metas'], | |
return_loss=False, | |
return_heatmap=return_heatmap) | |
return result['preds'], result['output_heatmap'] | |
def inference_top_down_pose_model(model, | |
img_or_path, | |
person_results=None, | |
bbox_thr=None, | |
format='xywh', | |
dataset='TopDownCocoDataset', | |
dataset_info=None, | |
return_heatmap=False, | |
outputs=None): | |
"""Inference a single image with a list of person bounding boxes. | |
Note: | |
- num_people: P | |
- num_keypoints: K | |
- bbox height: H | |
- bbox width: W | |
Args: | |
model (nn.Module): The loaded pose model. | |
img_or_path (str| np.ndarray): Image filename or loaded image. | |
person_results (list(dict), optional): a list of detected persons that | |
contains ``bbox`` and/or ``track_id``: | |
- ``bbox`` (4, ) or (5, ): The person bounding box, which contains | |
4 box coordinates (and score). | |
- ``track_id`` (int): The unique id for each human instance. If | |
not provided, a dummy person result with a bbox covering | |
the entire image will be used. Default: None. | |
bbox_thr (float | None): Threshold for bounding boxes. Only bboxes | |
with higher scores will be fed into the pose detector. | |
If bbox_thr is None, all boxes will be used. | |
format (str): bbox format ('xyxy' | 'xywh'). Default: 'xywh'. | |
- `xyxy` means (left, top, right, bottom), | |
- `xywh` means (left, top, width, height). | |
dataset (str): Dataset name, e.g. 'TopDownCocoDataset'. | |
It is deprecated. Please use dataset_info instead. | |
dataset_info (DatasetInfo): A class containing all dataset info. | |
return_heatmap (bool) : Flag to return heatmap, default: False | |
outputs (list(str) | tuple(str)) : Names of layers whose outputs | |
need to be returned. Default: None. | |
Returns: | |
tuple: | |
- pose_results (list[dict]): The bbox & pose info. \ | |
Each item in the list is a dictionary, \ | |
containing the bbox: (left, top, right, bottom, [score]) \ | |
and the pose (ndarray[Kx3]): x, y, score. | |
- returned_outputs (list[dict[np.ndarray[N, K, H, W] | \ | |
torch.Tensor[N, K, H, W]]]): \ | |
Output feature maps from layers specified in `outputs`. \ | |
Includes 'heatmap' if `return_heatmap` is True. | |
""" | |
# get dataset info | |
if (dataset_info is None and hasattr(model, 'cfg') | |
and 'dataset_info' in model.cfg): | |
dataset_info = DatasetInfo(model.cfg.dataset_info) | |
if dataset_info is None: | |
warnings.warn( | |
'dataset is deprecated.' | |
'Please set `dataset_info` in the config.' | |
'Check https://github.com/open-mmlab/mmpose/pull/663' | |
' for details.', DeprecationWarning) | |
# only two kinds of bbox format is supported. | |
assert format in ['xyxy', 'xywh'] | |
pose_results = [] | |
returned_outputs = [] | |
if person_results is None: | |
# create dummy person results | |
if isinstance(img_or_path, str): | |
width, height = Image.open(img_or_path).size | |
else: | |
height, width = img_or_path.shape[:2] | |
person_results = [{'bbox': np.array([0, 0, width, height])}] | |
if len(person_results) == 0: | |
return pose_results, returned_outputs | |
# Change for-loop preprocess each bbox to preprocess all bboxes at once. | |
bboxes = np.array([box['bbox'] for box in person_results]) | |
# Select bboxes by score threshold | |
if bbox_thr is not None: | |
assert bboxes.shape[1] == 5 | |
valid_idx = np.where(bboxes[:, 4] > bbox_thr)[0] | |
bboxes = bboxes[valid_idx] | |
person_results = [person_results[i] for i in valid_idx] | |
if format == 'xyxy': | |
bboxes_xyxy = bboxes | |
bboxes_xywh = _xyxy2xywh(bboxes) | |
else: | |
# format is already 'xywh' | |
bboxes_xywh = bboxes | |
bboxes_xyxy = _xywh2xyxy(bboxes) | |
# if bbox_thr remove all bounding box | |
if len(bboxes_xywh) == 0: | |
return [], [] | |
with OutputHook(model, outputs=outputs, as_tensor=False) as h: | |
# poses is results['pred'] # N x 17x 3 | |
poses, heatmap = _inference_single_pose_model( | |
model, | |
img_or_path, | |
bboxes_xywh, | |
dataset=dataset, | |
dataset_info=dataset_info, | |
return_heatmap=return_heatmap) | |
if return_heatmap: | |
h.layer_outputs['heatmap'] = heatmap | |
returned_outputs.append(h.layer_outputs) | |
assert len(poses) == len(person_results), print( | |
len(poses), len(person_results), len(bboxes_xyxy)) | |
for pose, person_result, bbox_xyxy in zip(poses, person_results, | |
bboxes_xyxy): | |
pose_result = person_result.copy() | |
pose_result['keypoints'] = pose | |
pose_result['bbox'] = bbox_xyxy | |
pose_results.append(pose_result) | |
return pose_results, returned_outputs | |
def inference_bottom_up_pose_model(model, | |
img_or_path, | |
dataset='BottomUpCocoDataset', | |
dataset_info=None, | |
pose_nms_thr=0.9, | |
return_heatmap=False, | |
outputs=None): | |
"""Inference a single image with a bottom-up pose model. | |
Note: | |
- num_people: P | |
- num_keypoints: K | |
- bbox height: H | |
- bbox width: W | |
Args: | |
model (nn.Module): The loaded pose model. | |
img_or_path (str| np.ndarray): Image filename or loaded image. | |
dataset (str): Dataset name, e.g. 'BottomUpCocoDataset'. | |
It is deprecated. Please use dataset_info instead. | |
dataset_info (DatasetInfo): A class containing all dataset info. | |
pose_nms_thr (float): retain oks overlap < pose_nms_thr, default: 0.9. | |
return_heatmap (bool) : Flag to return heatmap, default: False. | |
outputs (list(str) | tuple(str)) : Names of layers whose outputs | |
need to be returned, default: None. | |
Returns: | |
tuple: | |
- pose_results (list[np.ndarray]): The predicted pose info. \ | |
The length of the list is the number of people (P). \ | |
Each item in the list is a ndarray, containing each \ | |
person's pose (np.ndarray[Kx3]): x, y, score. | |
- returned_outputs (list[dict[np.ndarray[N, K, H, W] | \ | |
torch.Tensor[N, K, H, W]]]): \ | |
Output feature maps from layers specified in `outputs`. \ | |
Includes 'heatmap' if `return_heatmap` is True. | |
""" | |
# get dataset info | |
if (dataset_info is None and hasattr(model, 'cfg') | |
and 'dataset_info' in model.cfg): | |
dataset_info = DatasetInfo(model.cfg.dataset_info) | |
if dataset_info is not None: | |
dataset_name = dataset_info.dataset_name | |
flip_index = dataset_info.flip_index | |
sigmas = getattr(dataset_info, 'sigmas', None) | |
else: | |
warnings.warn( | |
'dataset is deprecated.' | |
'Please set `dataset_info` in the config.' | |
'Check https://github.com/open-mmlab/mmpose/pull/663 for details.', | |
DeprecationWarning) | |
assert (dataset == 'BottomUpCocoDataset') | |
dataset_name = dataset | |
flip_index = [0, 2, 1, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, 16, 15] | |
sigmas = None | |
pose_results = [] | |
returned_outputs = [] | |
cfg = model.cfg | |
device = next(model.parameters()).device | |
if device.type == 'cpu': | |
device = -1 | |
# build the data pipeline | |
test_pipeline = Compose(cfg.test_pipeline) | |
# prepare data | |
data = { | |
'dataset': dataset_name, | |
'ann_info': { | |
'image_size': np.array(cfg.data_cfg['image_size']), | |
'num_joints': cfg.data_cfg['num_joints'], | |
'flip_index': flip_index, | |
} | |
} | |
if isinstance(img_or_path, np.ndarray): | |
data['img'] = img_or_path | |
else: | |
data['image_file'] = img_or_path | |
data = test_pipeline(data) | |
data = collate([data], samples_per_gpu=1) | |
data = scatter(data, [device])[0] | |
with OutputHook(model, outputs=outputs, as_tensor=False) as h: | |
# forward the model | |
with torch.no_grad(): | |
result = model( | |
img=data['img'], | |
img_metas=data['img_metas'], | |
return_loss=False, | |
return_heatmap=return_heatmap) | |
if return_heatmap: | |
h.layer_outputs['heatmap'] = result['output_heatmap'] | |
returned_outputs.append(h.layer_outputs) | |
for idx, pred in enumerate(result['preds']): | |
area = (np.max(pred[:, 0]) - np.min(pred[:, 0])) * ( | |
np.max(pred[:, 1]) - np.min(pred[:, 1])) | |
pose_results.append({ | |
'keypoints': pred[:, :3], | |
'score': result['scores'][idx], | |
'area': area, | |
}) | |
# pose nms | |
score_per_joint = cfg.model.test_cfg.get('score_per_joint', False) | |
keep = oks_nms( | |
pose_results, | |
pose_nms_thr, | |
sigmas, | |
score_per_joint=score_per_joint) | |
pose_results = [pose_results[_keep] for _keep in keep] | |
return pose_results, returned_outputs | |
def vis_pose_result(model, | |
img, | |
result, | |
radius=4, | |
thickness=1, | |
kpt_score_thr=0.3, | |
bbox_color='green', | |
dataset='TopDownCocoDataset', | |
dataset_info=None, | |
show=False, | |
out_file=None): | |
"""Visualize the detection results on the image. | |
Args: | |
model (nn.Module): The loaded detector. | |
img (str | np.ndarray): Image filename or loaded image. | |
result (list[dict]): The results to draw over `img` | |
(bbox_result, pose_result). | |
radius (int): Radius of circles. | |
thickness (int): Thickness of lines. | |
kpt_score_thr (float): The threshold to visualize the keypoints. | |
skeleton (list[tuple()]): Default None. | |
show (bool): Whether to show the image. Default True. | |
out_file (str|None): The filename of the output visualization image. | |
""" | |
# get dataset info | |
if (dataset_info is None and hasattr(model, 'cfg') | |
and 'dataset_info' in model.cfg): | |
dataset_info = DatasetInfo(model.cfg.dataset_info) | |
if dataset_info is not None: | |
skeleton = dataset_info.skeleton | |
pose_kpt_color = dataset_info.pose_kpt_color | |
pose_link_color = dataset_info.pose_link_color | |
else: | |
warnings.warn( | |
'dataset is deprecated.' | |
'Please set `dataset_info` in the config.' | |
'Check https://github.com/open-mmlab/mmpose/pull/663 for details.', | |
DeprecationWarning) | |
# TODO: These will be removed in the later versions. | |
palette = np.array([[255, 128, 0], [255, 153, 51], [255, 178, 102], | |
[230, 230, 0], [255, 153, 255], [153, 204, 255], | |
[255, 102, 255], [255, 51, 255], [102, 178, 255], | |
[51, 153, 255], [255, 153, 153], [255, 102, 102], | |
[255, 51, 51], [153, 255, 153], [102, 255, 102], | |
[51, 255, 51], [0, 255, 0], [0, 0, 255], | |
[255, 0, 0], [255, 255, 255]]) | |
if dataset in ('TopDownCocoDataset', 'BottomUpCocoDataset', | |
'TopDownOCHumanDataset', 'AnimalMacaqueDataset'): | |
# show the results | |
skeleton = [[15, 13], [13, 11], [16, 14], [14, 12], [11, 12], | |
[5, 11], [6, 12], [5, 6], [5, 7], [6, 8], [7, 9], | |
[8, 10], [1, 2], [0, 1], [0, 2], [1, 3], [2, 4], | |
[3, 5], [4, 6]] | |
pose_link_color = palette[[ | |
0, 0, 0, 0, 7, 7, 7, 9, 9, 9, 9, 9, 16, 16, 16, 16, 16, 16, 16 | |
]] | |
pose_kpt_color = palette[[ | |
16, 16, 16, 16, 16, 9, 9, 9, 9, 9, 9, 0, 0, 0, 0, 0, 0 | |
]] | |
elif dataset == 'TopDownCocoWholeBodyDataset': | |
# show the results | |
skeleton = [[15, 13], [13, 11], [16, 14], [14, 12], [11, 12], | |
[5, 11], [6, 12], [5, 6], [5, 7], [6, 8], [7, 9], | |
[8, 10], [1, 2], [0, 1], [0, 2], | |
[1, 3], [2, 4], [3, 5], [4, 6], [15, 17], [15, 18], | |
[15, 19], [16, 20], [16, 21], [16, 22], [91, 92], | |
[92, 93], [93, 94], [94, 95], [91, 96], [96, 97], | |
[97, 98], [98, 99], [91, 100], [100, 101], [101, 102], | |
[102, 103], [91, 104], [104, 105], [105, 106], | |
[106, 107], [91, 108], [108, 109], [109, 110], | |
[110, 111], [112, 113], [113, 114], [114, 115], | |
[115, 116], [112, 117], [117, 118], [118, 119], | |
[119, 120], [112, 121], [121, 122], [122, 123], | |
[123, 124], [112, 125], [125, 126], [126, 127], | |
[127, 128], [112, 129], [129, 130], [130, 131], | |
[131, 132]] | |
pose_link_color = palette[[ | |
0, 0, 0, 0, 7, 7, 7, 9, 9, 9, 9, 9, 16, 16, 16, 16, 16, 16, 16 | |
] + [16, 16, 16, 16, 16, 16] + [ | |
0, 0, 0, 0, 4, 4, 4, 4, 8, 8, 8, 8, 12, 12, 12, 12, 16, 16, 16, | |
16 | |
] + [ | |
0, 0, 0, 0, 4, 4, 4, 4, 8, 8, 8, 8, 12, 12, 12, 12, 16, 16, 16, | |
16 | |
]] | |
pose_kpt_color = palette[ | |
[16, 16, 16, 16, 16, 9, 9, 9, 9, 9, 9, 0, 0, 0, 0, 0, 0] + | |
[0, 0, 0, 0, 0, 0] + [19] * (68 + 42)] | |
elif dataset == 'TopDownAicDataset': | |
skeleton = [[2, 1], [1, 0], [0, 13], [13, 3], [3, 4], [4, 5], | |
[8, 7], [7, 6], [6, 9], [9, 10], [10, 11], [12, 13], | |
[0, 6], [3, 9]] | |
pose_link_color = palette[[ | |
9, 9, 9, 9, 9, 9, 16, 16, 16, 16, 16, 0, 7, 7 | |
]] | |
pose_kpt_color = palette[[ | |
9, 9, 9, 9, 9, 9, 16, 16, 16, 16, 16, 16, 0, 0 | |
]] | |
elif dataset == 'TopDownMpiiDataset': | |
skeleton = [[0, 1], [1, 2], [2, 6], [6, 3], [3, 4], [4, 5], [6, 7], | |
[7, 8], [8, 9], [8, 12], [12, 11], [11, 10], [8, 13], | |
[13, 14], [14, 15]] | |
pose_link_color = palette[[ | |
16, 16, 16, 16, 16, 16, 7, 7, 0, 9, 9, 9, 9, 9, 9 | |
]] | |
pose_kpt_color = palette[[ | |
16, 16, 16, 16, 16, 16, 7, 7, 0, 0, 9, 9, 9, 9, 9, 9 | |
]] | |
elif dataset == 'TopDownMpiiTrbDataset': | |
skeleton = [[12, 13], [13, 0], [13, 1], [0, 2], [1, 3], [2, 4], | |
[3, 5], [0, 6], [1, 7], [6, 7], [6, 8], [7, | |
9], [8, 10], | |
[9, 11], [14, 15], [16, 17], [18, 19], [20, 21], | |
[22, 23], [24, 25], [26, 27], [28, 29], [30, 31], | |
[32, 33], [34, 35], [36, 37], [38, 39]] | |
pose_link_color = palette[[16] * 14 + [19] * 13] | |
pose_kpt_color = palette[[16] * 14 + [0] * 26] | |
elif dataset in ('OneHand10KDataset', 'FreiHandDataset', | |
'PanopticDataset'): | |
skeleton = [[0, 1], [1, 2], [2, 3], [3, 4], [0, 5], [5, 6], [6, 7], | |
[7, 8], [0, 9], [9, 10], [10, 11], [11, 12], [0, 13], | |
[13, 14], [14, 15], [15, 16], [0, 17], [17, 18], | |
[18, 19], [19, 20]] | |
pose_link_color = palette[[ | |
0, 0, 0, 0, 4, 4, 4, 4, 8, 8, 8, 8, 12, 12, 12, 12, 16, 16, 16, | |
16 | |
]] | |
pose_kpt_color = palette[[ | |
0, 0, 0, 0, 0, 4, 4, 4, 4, 8, 8, 8, 8, 12, 12, 12, 12, 16, 16, | |
16, 16 | |
]] | |
elif dataset == 'InterHand2DDataset': | |
skeleton = [[0, 1], [1, 2], [2, 3], [4, 5], [5, 6], [6, 7], [8, 9], | |
[9, 10], [10, 11], [12, 13], [13, 14], [14, 15], | |
[16, 17], [17, 18], [18, 19], [3, 20], [7, 20], | |
[11, 20], [15, 20], [19, 20]] | |
pose_link_color = palette[[ | |
0, 0, 0, 4, 4, 4, 8, 8, 8, 12, 12, 12, 16, 16, 16, 0, 4, 8, 12, | |
16 | |
]] | |
pose_kpt_color = palette[[ | |
0, 0, 0, 0, 4, 4, 4, 4, 8, 8, 8, 8, 12, 12, 12, 12, 16, 16, 16, | |
16, 0 | |
]] | |
elif dataset == 'Face300WDataset': | |
# show the results | |
skeleton = [] | |
pose_link_color = palette[[]] | |
pose_kpt_color = palette[[19] * 68] | |
kpt_score_thr = 0 | |
elif dataset == 'FaceAFLWDataset': | |
# show the results | |
skeleton = [] | |
pose_link_color = palette[[]] | |
pose_kpt_color = palette[[19] * 19] | |
kpt_score_thr = 0 | |
elif dataset == 'FaceCOFWDataset': | |
# show the results | |
skeleton = [] | |
pose_link_color = palette[[]] | |
pose_kpt_color = palette[[19] * 29] | |
kpt_score_thr = 0 | |
elif dataset == 'FaceWFLWDataset': | |
# show the results | |
skeleton = [] | |
pose_link_color = palette[[]] | |
pose_kpt_color = palette[[19] * 98] | |
kpt_score_thr = 0 | |
elif dataset == 'AnimalHorse10Dataset': | |
skeleton = [[0, 1], [1, 12], [12, 16], [16, 21], [21, 17], | |
[17, 11], [11, 10], [10, 8], [8, 9], [9, 12], [2, 3], | |
[3, 4], [5, 6], [6, 7], [13, 14], [14, 15], [18, 19], | |
[19, 20]] | |
pose_link_color = palette[[4] * 10 + [6] * 2 + [6] * 2 + [7] * 2 + | |
[7] * 2] | |
pose_kpt_color = palette[[ | |
4, 4, 6, 6, 6, 6, 6, 6, 4, 4, 4, 4, 4, 7, 7, 7, 4, 4, 7, 7, 7, | |
4 | |
]] | |
elif dataset == 'AnimalFlyDataset': | |
skeleton = [[1, 0], [2, 0], [3, 0], [4, 3], [5, 4], [7, 6], [8, 7], | |
[9, 8], [11, 10], [12, 11], [13, 12], [15, 14], | |
[16, 15], [17, 16], [19, 18], [20, 19], [21, 20], | |
[23, 22], [24, 23], [25, 24], [27, 26], [28, 27], | |
[29, 28], [30, 3], [31, 3]] | |
pose_link_color = palette[[0] * 25] | |
pose_kpt_color = palette[[0] * 32] | |
elif dataset == 'AnimalLocustDataset': | |
skeleton = [[1, 0], [2, 1], [3, 2], [4, 3], [6, 5], [7, 6], [9, 8], | |
[10, 9], [11, 10], [13, 12], [14, 13], [15, 14], | |
[17, 16], [18, 17], [19, 18], [21, 20], [22, 21], | |
[24, 23], [25, 24], [26, 25], [28, 27], [29, 28], | |
[30, 29], [32, 31], [33, 32], [34, 33]] | |
pose_link_color = palette[[0] * 26] | |
pose_kpt_color = palette[[0] * 35] | |
elif dataset == 'AnimalZebraDataset': | |
skeleton = [[1, 0], [2, 1], [3, 2], [4, 2], [5, 7], [6, 7], [7, 2], | |
[8, 7]] | |
pose_link_color = palette[[0] * 8] | |
pose_kpt_color = palette[[0] * 9] | |
elif dataset in 'AnimalPoseDataset': | |
skeleton = [[0, 1], [0, 2], [1, 3], [0, 4], [1, 4], [4, 5], [5, 7], | |
[6, 7], [5, 8], [8, 12], [12, 16], [5, 9], [9, 13], | |
[13, 17], [6, 10], [10, 14], [14, 18], [6, 11], | |
[11, 15], [15, 19]] | |
pose_link_color = palette[[0] * 20] | |
pose_kpt_color = palette[[0] * 20] | |
else: | |
NotImplementedError() | |
if hasattr(model, 'module'): | |
model = model.module | |
img = model.show_result( | |
img, | |
result, | |
skeleton, | |
radius=radius, | |
thickness=thickness, | |
pose_kpt_color=pose_kpt_color, | |
pose_link_color=pose_link_color, | |
kpt_score_thr=kpt_score_thr, | |
bbox_color=bbox_color, | |
show=show, | |
out_file=out_file) | |
return img | |
def process_mmdet_results(mmdet_results, cat_id=1): | |
"""Process mmdet results, and return a list of bboxes. | |
Args: | |
mmdet_results (list|tuple): mmdet results. | |
cat_id (int): category id (default: 1 for human) | |
Returns: | |
person_results (list): a list of detected bounding boxes | |
""" | |
if isinstance(mmdet_results, tuple): | |
det_results = mmdet_results[0] | |
else: | |
det_results = mmdet_results | |
bboxes = det_results[cat_id - 1] | |
person_results = [] | |
for bbox in bboxes: | |
person = {} | |
person['bbox'] = bbox | |
person_results.append(person) | |
return person_results | |