HaMeR / mmpose /apis /inference.py
geopavlakos's picture
Initial commit
d7a991a
raw
history blame
32.3 kB
# Copyright (c) OpenMMLab. All rights reserved.
import os
import warnings
import mmcv
import numpy as np
import torch
from mmcv.parallel import collate, scatter
from mmcv.runner import load_checkpoint
from PIL import Image
from mmpose.core.post_processing import oks_nms
from mmpose.datasets.dataset_info import DatasetInfo
from mmpose.datasets.pipelines import Compose
from mmpose.models import build_posenet
from mmpose.utils.hooks import OutputHook
os.environ['KMP_DUPLICATE_LIB_OK'] = 'TRUE'
def init_pose_model(config, checkpoint=None, device='cuda:0'):
"""Initialize a pose model from config file.
Args:
config (str or :obj:`mmcv.Config`): Config file path or the config
object.
checkpoint (str, optional): Checkpoint path. If left as None, the model
will not load any weights.
Returns:
nn.Module: The constructed detector.
"""
if isinstance(config, str):
config = mmcv.Config.fromfile(config)
elif not isinstance(config, mmcv.Config):
raise TypeError('config must be a filename or Config object, '
f'but got {type(config)}')
config.model.pretrained = None
model = build_posenet(config.model)
if checkpoint is not None:
# load model checkpoint
load_checkpoint(model, checkpoint, map_location='cpu')
# save the config in the model for convenience
model.cfg = config
model.to(device)
model.eval()
return model
def _xyxy2xywh(bbox_xyxy):
"""Transform the bbox format from x1y1x2y2 to xywh.
Args:
bbox_xyxy (np.ndarray): Bounding boxes (with scores), shaped (n, 4) or
(n, 5). (left, top, right, bottom, [score])
Returns:
np.ndarray: Bounding boxes (with scores),
shaped (n, 4) or (n, 5). (left, top, width, height, [score])
"""
bbox_xywh = bbox_xyxy.copy()
bbox_xywh[:, 2] = bbox_xywh[:, 2] - bbox_xywh[:, 0] + 1
bbox_xywh[:, 3] = bbox_xywh[:, 3] - bbox_xywh[:, 1] + 1
return bbox_xywh
def _xywh2xyxy(bbox_xywh):
"""Transform the bbox format from xywh to x1y1x2y2.
Args:
bbox_xywh (ndarray): Bounding boxes (with scores),
shaped (n, 4) or (n, 5). (left, top, width, height, [score])
Returns:
np.ndarray: Bounding boxes (with scores), shaped (n, 4) or
(n, 5). (left, top, right, bottom, [score])
"""
bbox_xyxy = bbox_xywh.copy()
bbox_xyxy[:, 2] = bbox_xyxy[:, 2] + bbox_xyxy[:, 0] - 1
bbox_xyxy[:, 3] = bbox_xyxy[:, 3] + bbox_xyxy[:, 1] - 1
return bbox_xyxy
def _box2cs(cfg, box):
"""This encodes bbox(x,y,w,h) into (center, scale)
Args:
x, y, w, h
Returns:
tuple: A tuple containing center and scale.
- np.ndarray[float32](2,): Center of the bbox (x, y).
- np.ndarray[float32](2,): Scale of the bbox w & h.
"""
x, y, w, h = box[:4]
input_size = cfg.data_cfg['image_size']
aspect_ratio = input_size[0] / input_size[1]
center = np.array([x + w * 0.5, y + h * 0.5], dtype=np.float32)
if w > aspect_ratio * h:
h = w * 1.0 / aspect_ratio
elif w < aspect_ratio * h:
w = h * aspect_ratio
# pixel std is 200.0
scale = np.array([w / 200.0, h / 200.0], dtype=np.float32)
scale = scale * 1.25
return center, scale
def _inference_single_pose_model(model,
img_or_path,
bboxes,
dataset='TopDownCocoDataset',
dataset_info=None,
return_heatmap=False):
"""Inference human bounding boxes.
Note:
- num_bboxes: N
- num_keypoints: K
Args:
model (nn.Module): The loaded pose model.
img_or_path (str | np.ndarray): Image filename or loaded image.
bboxes (list | np.ndarray): All bounding boxes (with scores),
shaped (N, 4) or (N, 5). (left, top, width, height, [score])
where N is number of bounding boxes.
dataset (str): Dataset name. Deprecated.
dataset_info (DatasetInfo): A class containing all dataset info.
outputs (list[str] | tuple[str]): Names of layers whose output is
to be returned, default: None
Returns:
ndarray[NxKx3]: Predicted pose x, y, score.
heatmap[N, K, H, W]: Model output heatmap.
"""
cfg = model.cfg
device = next(model.parameters()).device
if device.type == 'cpu':
device = -1
# build the data pipeline
test_pipeline = Compose(cfg.test_pipeline)
assert len(bboxes[0]) in [4, 5]
if dataset_info is not None:
dataset_name = dataset_info.dataset_name
flip_pairs = dataset_info.flip_pairs
else:
warnings.warn(
'dataset is deprecated.'
'Please set `dataset_info` in the config.'
'Check https://github.com/open-mmlab/mmpose/pull/663 for details.',
DeprecationWarning)
# TODO: These will be removed in the later versions.
if dataset in ('TopDownCocoDataset', 'TopDownOCHumanDataset',
'AnimalMacaqueDataset'):
flip_pairs = [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12],
[13, 14], [15, 16]]
elif dataset == 'TopDownCocoWholeBodyDataset':
body = [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12],
[13, 14], [15, 16]]
foot = [[17, 20], [18, 21], [19, 22]]
face = [[23, 39], [24, 38], [25, 37], [26, 36], [27, 35], [28, 34],
[29, 33], [30, 32], [40, 49], [41, 48], [42, 47], [43, 46],
[44, 45], [54, 58], [55, 57], [59, 68], [60, 67], [61, 66],
[62, 65], [63, 70], [64, 69], [71, 77], [72, 76], [73, 75],
[78, 82], [79, 81], [83, 87], [84, 86], [88, 90]]
hand = [[91, 112], [92, 113], [93, 114], [94, 115], [95, 116],
[96, 117], [97, 118], [98, 119], [99, 120], [100, 121],
[101, 122], [102, 123], [103, 124], [104, 125], [105, 126],
[106, 127], [107, 128], [108, 129], [109, 130], [110, 131],
[111, 132]]
flip_pairs = body + foot + face + hand
elif dataset == 'TopDownAicDataset':
flip_pairs = [[0, 3], [1, 4], [2, 5], [6, 9], [7, 10], [8, 11]]
elif dataset == 'TopDownMpiiDataset':
flip_pairs = [[0, 5], [1, 4], [2, 3], [10, 15], [11, 14], [12, 13]]
elif dataset == 'TopDownMpiiTrbDataset':
flip_pairs = [[0, 1], [2, 3], [4, 5], [6, 7], [8, 9], [10, 11],
[14, 15], [16, 22], [28, 34], [17, 23], [29, 35],
[18, 24], [30, 36], [19, 25], [31, 37], [20, 26],
[32, 38], [21, 27], [33, 39]]
elif dataset in ('OneHand10KDataset', 'FreiHandDataset',
'PanopticDataset', 'InterHand2DDataset'):
flip_pairs = []
elif dataset in 'Face300WDataset':
flip_pairs = [[0, 16], [1, 15], [2, 14], [3, 13], [4, 12], [5, 11],
[6, 10], [7, 9], [17, 26], [18, 25], [19, 24],
[20, 23], [21, 22], [31, 35], [32, 34], [36, 45],
[37, 44], [38, 43], [39, 42], [40, 47], [41, 46],
[48, 54], [49, 53], [50, 52], [61, 63], [60, 64],
[67, 65], [58, 56], [59, 55]]
elif dataset in 'FaceAFLWDataset':
flip_pairs = [[0, 5], [1, 4], [2, 3], [6, 11], [7, 10], [8, 9],
[12, 14], [15, 17]]
elif dataset in 'FaceCOFWDataset':
flip_pairs = [[0, 1], [4, 6], [2, 3], [5, 7], [8, 9], [10, 11],
[12, 14], [16, 17], [13, 15], [18, 19], [22, 23]]
elif dataset in 'FaceWFLWDataset':
flip_pairs = [[0, 32], [1, 31], [2, 30], [3, 29], [4, 28], [5, 27],
[6, 26], [7, 25], [8, 24], [9, 23], [10, 22],
[11, 21], [12, 20], [13, 19], [14, 18], [15, 17],
[33, 46], [34, 45], [35, 44], [36, 43], [37, 42],
[38, 50], [39, 49], [40, 48], [41, 47], [60, 72],
[61, 71], [62, 70], [63, 69], [64, 68], [65, 75],
[66, 74], [67, 73], [55, 59], [56, 58], [76, 82],
[77, 81], [78, 80], [87, 83], [86, 84], [88, 92],
[89, 91], [95, 93], [96, 97]]
elif dataset in 'AnimalFlyDataset':
flip_pairs = [[1, 2], [6, 18], [7, 19], [8, 20], [9, 21], [10, 22],
[11, 23], [12, 24], [13, 25], [14, 26], [15, 27],
[16, 28], [17, 29], [30, 31]]
elif dataset in 'AnimalHorse10Dataset':
flip_pairs = []
elif dataset in 'AnimalLocustDataset':
flip_pairs = [[5, 20], [6, 21], [7, 22], [8, 23], [9, 24],
[10, 25], [11, 26], [12, 27], [13, 28], [14, 29],
[15, 30], [16, 31], [17, 32], [18, 33], [19, 34]]
elif dataset in 'AnimalZebraDataset':
flip_pairs = [[3, 4], [5, 6]]
elif dataset in 'AnimalPoseDataset':
flip_pairs = [[0, 1], [2, 3], [8, 9], [10, 11], [12, 13], [14, 15],
[16, 17], [18, 19]]
else:
raise NotImplementedError()
dataset_name = dataset
batch_data = []
for bbox in bboxes:
center, scale = _box2cs(cfg, bbox)
# prepare data
data = {
'center':
center,
'scale':
scale,
'bbox_score':
bbox[4] if len(bbox) == 5 else 1,
'bbox_id':
0, # need to be assigned if batch_size > 1
'dataset':
dataset_name,
'joints_3d':
np.zeros((cfg.data_cfg.num_joints, 3), dtype=np.float32),
'joints_3d_visible':
np.zeros((cfg.data_cfg.num_joints, 3), dtype=np.float32),
'rotation':
0,
'ann_info': {
'image_size': np.array(cfg.data_cfg['image_size']),
'num_joints': cfg.data_cfg['num_joints'],
'flip_pairs': flip_pairs
}
}
if isinstance(img_or_path, np.ndarray):
data['img'] = img_or_path
else:
data['image_file'] = img_or_path
data = test_pipeline(data)
batch_data.append(data)
batch_data = collate(batch_data, samples_per_gpu=len(batch_data))
batch_data = scatter(batch_data, [device])[0]
# forward the model
with torch.no_grad():
result = model(
img=batch_data['img'],
img_metas=batch_data['img_metas'],
return_loss=False,
return_heatmap=return_heatmap)
return result['preds'], result['output_heatmap']
def inference_top_down_pose_model(model,
img_or_path,
person_results=None,
bbox_thr=None,
format='xywh',
dataset='TopDownCocoDataset',
dataset_info=None,
return_heatmap=False,
outputs=None):
"""Inference a single image with a list of person bounding boxes.
Note:
- num_people: P
- num_keypoints: K
- bbox height: H
- bbox width: W
Args:
model (nn.Module): The loaded pose model.
img_or_path (str| np.ndarray): Image filename or loaded image.
person_results (list(dict), optional): a list of detected persons that
contains ``bbox`` and/or ``track_id``:
- ``bbox`` (4, ) or (5, ): The person bounding box, which contains
4 box coordinates (and score).
- ``track_id`` (int): The unique id for each human instance. If
not provided, a dummy person result with a bbox covering
the entire image will be used. Default: None.
bbox_thr (float | None): Threshold for bounding boxes. Only bboxes
with higher scores will be fed into the pose detector.
If bbox_thr is None, all boxes will be used.
format (str): bbox format ('xyxy' | 'xywh'). Default: 'xywh'.
- `xyxy` means (left, top, right, bottom),
- `xywh` means (left, top, width, height).
dataset (str): Dataset name, e.g. 'TopDownCocoDataset'.
It is deprecated. Please use dataset_info instead.
dataset_info (DatasetInfo): A class containing all dataset info.
return_heatmap (bool) : Flag to return heatmap, default: False
outputs (list(str) | tuple(str)) : Names of layers whose outputs
need to be returned. Default: None.
Returns:
tuple:
- pose_results (list[dict]): The bbox & pose info. \
Each item in the list is a dictionary, \
containing the bbox: (left, top, right, bottom, [score]) \
and the pose (ndarray[Kx3]): x, y, score.
- returned_outputs (list[dict[np.ndarray[N, K, H, W] | \
torch.Tensor[N, K, H, W]]]): \
Output feature maps from layers specified in `outputs`. \
Includes 'heatmap' if `return_heatmap` is True.
"""
# get dataset info
if (dataset_info is None and hasattr(model, 'cfg')
and 'dataset_info' in model.cfg):
dataset_info = DatasetInfo(model.cfg.dataset_info)
if dataset_info is None:
warnings.warn(
'dataset is deprecated.'
'Please set `dataset_info` in the config.'
'Check https://github.com/open-mmlab/mmpose/pull/663'
' for details.', DeprecationWarning)
# only two kinds of bbox format is supported.
assert format in ['xyxy', 'xywh']
pose_results = []
returned_outputs = []
if person_results is None:
# create dummy person results
if isinstance(img_or_path, str):
width, height = Image.open(img_or_path).size
else:
height, width = img_or_path.shape[:2]
person_results = [{'bbox': np.array([0, 0, width, height])}]
if len(person_results) == 0:
return pose_results, returned_outputs
# Change for-loop preprocess each bbox to preprocess all bboxes at once.
bboxes = np.array([box['bbox'] for box in person_results])
# Select bboxes by score threshold
if bbox_thr is not None:
assert bboxes.shape[1] == 5
valid_idx = np.where(bboxes[:, 4] > bbox_thr)[0]
bboxes = bboxes[valid_idx]
person_results = [person_results[i] for i in valid_idx]
if format == 'xyxy':
bboxes_xyxy = bboxes
bboxes_xywh = _xyxy2xywh(bboxes)
else:
# format is already 'xywh'
bboxes_xywh = bboxes
bboxes_xyxy = _xywh2xyxy(bboxes)
# if bbox_thr remove all bounding box
if len(bboxes_xywh) == 0:
return [], []
with OutputHook(model, outputs=outputs, as_tensor=False) as h:
# poses is results['pred'] # N x 17x 3
poses, heatmap = _inference_single_pose_model(
model,
img_or_path,
bboxes_xywh,
dataset=dataset,
dataset_info=dataset_info,
return_heatmap=return_heatmap)
if return_heatmap:
h.layer_outputs['heatmap'] = heatmap
returned_outputs.append(h.layer_outputs)
assert len(poses) == len(person_results), print(
len(poses), len(person_results), len(bboxes_xyxy))
for pose, person_result, bbox_xyxy in zip(poses, person_results,
bboxes_xyxy):
pose_result = person_result.copy()
pose_result['keypoints'] = pose
pose_result['bbox'] = bbox_xyxy
pose_results.append(pose_result)
return pose_results, returned_outputs
def inference_bottom_up_pose_model(model,
img_or_path,
dataset='BottomUpCocoDataset',
dataset_info=None,
pose_nms_thr=0.9,
return_heatmap=False,
outputs=None):
"""Inference a single image with a bottom-up pose model.
Note:
- num_people: P
- num_keypoints: K
- bbox height: H
- bbox width: W
Args:
model (nn.Module): The loaded pose model.
img_or_path (str| np.ndarray): Image filename or loaded image.
dataset (str): Dataset name, e.g. 'BottomUpCocoDataset'.
It is deprecated. Please use dataset_info instead.
dataset_info (DatasetInfo): A class containing all dataset info.
pose_nms_thr (float): retain oks overlap < pose_nms_thr, default: 0.9.
return_heatmap (bool) : Flag to return heatmap, default: False.
outputs (list(str) | tuple(str)) : Names of layers whose outputs
need to be returned, default: None.
Returns:
tuple:
- pose_results (list[np.ndarray]): The predicted pose info. \
The length of the list is the number of people (P). \
Each item in the list is a ndarray, containing each \
person's pose (np.ndarray[Kx3]): x, y, score.
- returned_outputs (list[dict[np.ndarray[N, K, H, W] | \
torch.Tensor[N, K, H, W]]]): \
Output feature maps from layers specified in `outputs`. \
Includes 'heatmap' if `return_heatmap` is True.
"""
# get dataset info
if (dataset_info is None and hasattr(model, 'cfg')
and 'dataset_info' in model.cfg):
dataset_info = DatasetInfo(model.cfg.dataset_info)
if dataset_info is not None:
dataset_name = dataset_info.dataset_name
flip_index = dataset_info.flip_index
sigmas = getattr(dataset_info, 'sigmas', None)
else:
warnings.warn(
'dataset is deprecated.'
'Please set `dataset_info` in the config.'
'Check https://github.com/open-mmlab/mmpose/pull/663 for details.',
DeprecationWarning)
assert (dataset == 'BottomUpCocoDataset')
dataset_name = dataset
flip_index = [0, 2, 1, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, 16, 15]
sigmas = None
pose_results = []
returned_outputs = []
cfg = model.cfg
device = next(model.parameters()).device
if device.type == 'cpu':
device = -1
# build the data pipeline
test_pipeline = Compose(cfg.test_pipeline)
# prepare data
data = {
'dataset': dataset_name,
'ann_info': {
'image_size': np.array(cfg.data_cfg['image_size']),
'num_joints': cfg.data_cfg['num_joints'],
'flip_index': flip_index,
}
}
if isinstance(img_or_path, np.ndarray):
data['img'] = img_or_path
else:
data['image_file'] = img_or_path
data = test_pipeline(data)
data = collate([data], samples_per_gpu=1)
data = scatter(data, [device])[0]
with OutputHook(model, outputs=outputs, as_tensor=False) as h:
# forward the model
with torch.no_grad():
result = model(
img=data['img'],
img_metas=data['img_metas'],
return_loss=False,
return_heatmap=return_heatmap)
if return_heatmap:
h.layer_outputs['heatmap'] = result['output_heatmap']
returned_outputs.append(h.layer_outputs)
for idx, pred in enumerate(result['preds']):
area = (np.max(pred[:, 0]) - np.min(pred[:, 0])) * (
np.max(pred[:, 1]) - np.min(pred[:, 1]))
pose_results.append({
'keypoints': pred[:, :3],
'score': result['scores'][idx],
'area': area,
})
# pose nms
score_per_joint = cfg.model.test_cfg.get('score_per_joint', False)
keep = oks_nms(
pose_results,
pose_nms_thr,
sigmas,
score_per_joint=score_per_joint)
pose_results = [pose_results[_keep] for _keep in keep]
return pose_results, returned_outputs
def vis_pose_result(model,
img,
result,
radius=4,
thickness=1,
kpt_score_thr=0.3,
bbox_color='green',
dataset='TopDownCocoDataset',
dataset_info=None,
show=False,
out_file=None):
"""Visualize the detection results on the image.
Args:
model (nn.Module): The loaded detector.
img (str | np.ndarray): Image filename or loaded image.
result (list[dict]): The results to draw over `img`
(bbox_result, pose_result).
radius (int): Radius of circles.
thickness (int): Thickness of lines.
kpt_score_thr (float): The threshold to visualize the keypoints.
skeleton (list[tuple()]): Default None.
show (bool): Whether to show the image. Default True.
out_file (str|None): The filename of the output visualization image.
"""
# get dataset info
if (dataset_info is None and hasattr(model, 'cfg')
and 'dataset_info' in model.cfg):
dataset_info = DatasetInfo(model.cfg.dataset_info)
if dataset_info is not None:
skeleton = dataset_info.skeleton
pose_kpt_color = dataset_info.pose_kpt_color
pose_link_color = dataset_info.pose_link_color
else:
warnings.warn(
'dataset is deprecated.'
'Please set `dataset_info` in the config.'
'Check https://github.com/open-mmlab/mmpose/pull/663 for details.',
DeprecationWarning)
# TODO: These will be removed in the later versions.
palette = np.array([[255, 128, 0], [255, 153, 51], [255, 178, 102],
[230, 230, 0], [255, 153, 255], [153, 204, 255],
[255, 102, 255], [255, 51, 255], [102, 178, 255],
[51, 153, 255], [255, 153, 153], [255, 102, 102],
[255, 51, 51], [153, 255, 153], [102, 255, 102],
[51, 255, 51], [0, 255, 0], [0, 0, 255],
[255, 0, 0], [255, 255, 255]])
if dataset in ('TopDownCocoDataset', 'BottomUpCocoDataset',
'TopDownOCHumanDataset', 'AnimalMacaqueDataset'):
# show the results
skeleton = [[15, 13], [13, 11], [16, 14], [14, 12], [11, 12],
[5, 11], [6, 12], [5, 6], [5, 7], [6, 8], [7, 9],
[8, 10], [1, 2], [0, 1], [0, 2], [1, 3], [2, 4],
[3, 5], [4, 6]]
pose_link_color = palette[[
0, 0, 0, 0, 7, 7, 7, 9, 9, 9, 9, 9, 16, 16, 16, 16, 16, 16, 16
]]
pose_kpt_color = palette[[
16, 16, 16, 16, 16, 9, 9, 9, 9, 9, 9, 0, 0, 0, 0, 0, 0
]]
elif dataset == 'TopDownCocoWholeBodyDataset':
# show the results
skeleton = [[15, 13], [13, 11], [16, 14], [14, 12], [11, 12],
[5, 11], [6, 12], [5, 6], [5, 7], [6, 8], [7, 9],
[8, 10], [1, 2], [0, 1], [0, 2],
[1, 3], [2, 4], [3, 5], [4, 6], [15, 17], [15, 18],
[15, 19], [16, 20], [16, 21], [16, 22], [91, 92],
[92, 93], [93, 94], [94, 95], [91, 96], [96, 97],
[97, 98], [98, 99], [91, 100], [100, 101], [101, 102],
[102, 103], [91, 104], [104, 105], [105, 106],
[106, 107], [91, 108], [108, 109], [109, 110],
[110, 111], [112, 113], [113, 114], [114, 115],
[115, 116], [112, 117], [117, 118], [118, 119],
[119, 120], [112, 121], [121, 122], [122, 123],
[123, 124], [112, 125], [125, 126], [126, 127],
[127, 128], [112, 129], [129, 130], [130, 131],
[131, 132]]
pose_link_color = palette[[
0, 0, 0, 0, 7, 7, 7, 9, 9, 9, 9, 9, 16, 16, 16, 16, 16, 16, 16
] + [16, 16, 16, 16, 16, 16] + [
0, 0, 0, 0, 4, 4, 4, 4, 8, 8, 8, 8, 12, 12, 12, 12, 16, 16, 16,
16
] + [
0, 0, 0, 0, 4, 4, 4, 4, 8, 8, 8, 8, 12, 12, 12, 12, 16, 16, 16,
16
]]
pose_kpt_color = palette[
[16, 16, 16, 16, 16, 9, 9, 9, 9, 9, 9, 0, 0, 0, 0, 0, 0] +
[0, 0, 0, 0, 0, 0] + [19] * (68 + 42)]
elif dataset == 'TopDownAicDataset':
skeleton = [[2, 1], [1, 0], [0, 13], [13, 3], [3, 4], [4, 5],
[8, 7], [7, 6], [6, 9], [9, 10], [10, 11], [12, 13],
[0, 6], [3, 9]]
pose_link_color = palette[[
9, 9, 9, 9, 9, 9, 16, 16, 16, 16, 16, 0, 7, 7
]]
pose_kpt_color = palette[[
9, 9, 9, 9, 9, 9, 16, 16, 16, 16, 16, 16, 0, 0
]]
elif dataset == 'TopDownMpiiDataset':
skeleton = [[0, 1], [1, 2], [2, 6], [6, 3], [3, 4], [4, 5], [6, 7],
[7, 8], [8, 9], [8, 12], [12, 11], [11, 10], [8, 13],
[13, 14], [14, 15]]
pose_link_color = palette[[
16, 16, 16, 16, 16, 16, 7, 7, 0, 9, 9, 9, 9, 9, 9
]]
pose_kpt_color = palette[[
16, 16, 16, 16, 16, 16, 7, 7, 0, 0, 9, 9, 9, 9, 9, 9
]]
elif dataset == 'TopDownMpiiTrbDataset':
skeleton = [[12, 13], [13, 0], [13, 1], [0, 2], [1, 3], [2, 4],
[3, 5], [0, 6], [1, 7], [6, 7], [6, 8], [7,
9], [8, 10],
[9, 11], [14, 15], [16, 17], [18, 19], [20, 21],
[22, 23], [24, 25], [26, 27], [28, 29], [30, 31],
[32, 33], [34, 35], [36, 37], [38, 39]]
pose_link_color = palette[[16] * 14 + [19] * 13]
pose_kpt_color = palette[[16] * 14 + [0] * 26]
elif dataset in ('OneHand10KDataset', 'FreiHandDataset',
'PanopticDataset'):
skeleton = [[0, 1], [1, 2], [2, 3], [3, 4], [0, 5], [5, 6], [6, 7],
[7, 8], [0, 9], [9, 10], [10, 11], [11, 12], [0, 13],
[13, 14], [14, 15], [15, 16], [0, 17], [17, 18],
[18, 19], [19, 20]]
pose_link_color = palette[[
0, 0, 0, 0, 4, 4, 4, 4, 8, 8, 8, 8, 12, 12, 12, 12, 16, 16, 16,
16
]]
pose_kpt_color = palette[[
0, 0, 0, 0, 0, 4, 4, 4, 4, 8, 8, 8, 8, 12, 12, 12, 12, 16, 16,
16, 16
]]
elif dataset == 'InterHand2DDataset':
skeleton = [[0, 1], [1, 2], [2, 3], [4, 5], [5, 6], [6, 7], [8, 9],
[9, 10], [10, 11], [12, 13], [13, 14], [14, 15],
[16, 17], [17, 18], [18, 19], [3, 20], [7, 20],
[11, 20], [15, 20], [19, 20]]
pose_link_color = palette[[
0, 0, 0, 4, 4, 4, 8, 8, 8, 12, 12, 12, 16, 16, 16, 0, 4, 8, 12,
16
]]
pose_kpt_color = palette[[
0, 0, 0, 0, 4, 4, 4, 4, 8, 8, 8, 8, 12, 12, 12, 12, 16, 16, 16,
16, 0
]]
elif dataset == 'Face300WDataset':
# show the results
skeleton = []
pose_link_color = palette[[]]
pose_kpt_color = palette[[19] * 68]
kpt_score_thr = 0
elif dataset == 'FaceAFLWDataset':
# show the results
skeleton = []
pose_link_color = palette[[]]
pose_kpt_color = palette[[19] * 19]
kpt_score_thr = 0
elif dataset == 'FaceCOFWDataset':
# show the results
skeleton = []
pose_link_color = palette[[]]
pose_kpt_color = palette[[19] * 29]
kpt_score_thr = 0
elif dataset == 'FaceWFLWDataset':
# show the results
skeleton = []
pose_link_color = palette[[]]
pose_kpt_color = palette[[19] * 98]
kpt_score_thr = 0
elif dataset == 'AnimalHorse10Dataset':
skeleton = [[0, 1], [1, 12], [12, 16], [16, 21], [21, 17],
[17, 11], [11, 10], [10, 8], [8, 9], [9, 12], [2, 3],
[3, 4], [5, 6], [6, 7], [13, 14], [14, 15], [18, 19],
[19, 20]]
pose_link_color = palette[[4] * 10 + [6] * 2 + [6] * 2 + [7] * 2 +
[7] * 2]
pose_kpt_color = palette[[
4, 4, 6, 6, 6, 6, 6, 6, 4, 4, 4, 4, 4, 7, 7, 7, 4, 4, 7, 7, 7,
4
]]
elif dataset == 'AnimalFlyDataset':
skeleton = [[1, 0], [2, 0], [3, 0], [4, 3], [5, 4], [7, 6], [8, 7],
[9, 8], [11, 10], [12, 11], [13, 12], [15, 14],
[16, 15], [17, 16], [19, 18], [20, 19], [21, 20],
[23, 22], [24, 23], [25, 24], [27, 26], [28, 27],
[29, 28], [30, 3], [31, 3]]
pose_link_color = palette[[0] * 25]
pose_kpt_color = palette[[0] * 32]
elif dataset == 'AnimalLocustDataset':
skeleton = [[1, 0], [2, 1], [3, 2], [4, 3], [6, 5], [7, 6], [9, 8],
[10, 9], [11, 10], [13, 12], [14, 13], [15, 14],
[17, 16], [18, 17], [19, 18], [21, 20], [22, 21],
[24, 23], [25, 24], [26, 25], [28, 27], [29, 28],
[30, 29], [32, 31], [33, 32], [34, 33]]
pose_link_color = palette[[0] * 26]
pose_kpt_color = palette[[0] * 35]
elif dataset == 'AnimalZebraDataset':
skeleton = [[1, 0], [2, 1], [3, 2], [4, 2], [5, 7], [6, 7], [7, 2],
[8, 7]]
pose_link_color = palette[[0] * 8]
pose_kpt_color = palette[[0] * 9]
elif dataset in 'AnimalPoseDataset':
skeleton = [[0, 1], [0, 2], [1, 3], [0, 4], [1, 4], [4, 5], [5, 7],
[6, 7], [5, 8], [8, 12], [12, 16], [5, 9], [9, 13],
[13, 17], [6, 10], [10, 14], [14, 18], [6, 11],
[11, 15], [15, 19]]
pose_link_color = palette[[0] * 20]
pose_kpt_color = palette[[0] * 20]
else:
NotImplementedError()
if hasattr(model, 'module'):
model = model.module
img = model.show_result(
img,
result,
skeleton,
radius=radius,
thickness=thickness,
pose_kpt_color=pose_kpt_color,
pose_link_color=pose_link_color,
kpt_score_thr=kpt_score_thr,
bbox_color=bbox_color,
show=show,
out_file=out_file)
return img
def process_mmdet_results(mmdet_results, cat_id=1):
"""Process mmdet results, and return a list of bboxes.
Args:
mmdet_results (list|tuple): mmdet results.
cat_id (int): category id (default: 1 for human)
Returns:
person_results (list): a list of detected bounding boxes
"""
if isinstance(mmdet_results, tuple):
det_results = mmdet_results[0]
else:
det_results = mmdet_results
bboxes = det_results[cat_id - 1]
person_results = []
for bbox in bboxes:
person = {}
person['bbox'] = bbox
person_results.append(person)
return person_results