File size: 32,267 Bytes
d7a991a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
# Copyright (c) OpenMMLab. All rights reserved.
import os
import warnings

import mmcv
import numpy as np
import torch
from mmcv.parallel import collate, scatter
from mmcv.runner import load_checkpoint
from PIL import Image

from mmpose.core.post_processing import oks_nms
from mmpose.datasets.dataset_info import DatasetInfo
from mmpose.datasets.pipelines import Compose
from mmpose.models import build_posenet
from mmpose.utils.hooks import OutputHook

os.environ['KMP_DUPLICATE_LIB_OK'] = 'TRUE'


def init_pose_model(config, checkpoint=None, device='cuda:0'):
    """Initialize a pose model from config file.

    Args:
        config (str or :obj:`mmcv.Config`): Config file path or the config
            object.
        checkpoint (str, optional): Checkpoint path. If left as None, the model
            will not load any weights.

    Returns:
        nn.Module: The constructed detector.
    """
    if isinstance(config, str):
        config = mmcv.Config.fromfile(config)
    elif not isinstance(config, mmcv.Config):
        raise TypeError('config must be a filename or Config object, '
                        f'but got {type(config)}')
    config.model.pretrained = None
    model = build_posenet(config.model)
    if checkpoint is not None:
        # load model checkpoint
        load_checkpoint(model, checkpoint, map_location='cpu')
    # save the config in the model for convenience
    model.cfg = config
    model.to(device)
    model.eval()
    return model


def _xyxy2xywh(bbox_xyxy):
    """Transform the bbox format from x1y1x2y2 to xywh.

    Args:
        bbox_xyxy (np.ndarray): Bounding boxes (with scores), shaped (n, 4) or
            (n, 5). (left, top, right, bottom, [score])

    Returns:
        np.ndarray: Bounding boxes (with scores),
          shaped (n, 4) or (n, 5). (left, top, width, height, [score])
    """
    bbox_xywh = bbox_xyxy.copy()
    bbox_xywh[:, 2] = bbox_xywh[:, 2] - bbox_xywh[:, 0] + 1
    bbox_xywh[:, 3] = bbox_xywh[:, 3] - bbox_xywh[:, 1] + 1

    return bbox_xywh


def _xywh2xyxy(bbox_xywh):
    """Transform the bbox format from xywh to x1y1x2y2.

    Args:
        bbox_xywh (ndarray): Bounding boxes (with scores),
            shaped (n, 4) or (n, 5). (left, top, width, height, [score])
    Returns:
        np.ndarray: Bounding boxes (with scores), shaped (n, 4) or
          (n, 5). (left, top, right, bottom, [score])
    """
    bbox_xyxy = bbox_xywh.copy()
    bbox_xyxy[:, 2] = bbox_xyxy[:, 2] + bbox_xyxy[:, 0] - 1
    bbox_xyxy[:, 3] = bbox_xyxy[:, 3] + bbox_xyxy[:, 1] - 1

    return bbox_xyxy


def _box2cs(cfg, box):
    """This encodes bbox(x,y,w,h) into (center, scale)

    Args:
        x, y, w, h

    Returns:
        tuple: A tuple containing center and scale.

        - np.ndarray[float32](2,): Center of the bbox (x, y).
        - np.ndarray[float32](2,): Scale of the bbox w & h.
    """

    x, y, w, h = box[:4]
    input_size = cfg.data_cfg['image_size']
    aspect_ratio = input_size[0] / input_size[1]
    center = np.array([x + w * 0.5, y + h * 0.5], dtype=np.float32)

    if w > aspect_ratio * h:
        h = w * 1.0 / aspect_ratio
    elif w < aspect_ratio * h:
        w = h * aspect_ratio

    # pixel std is 200.0
    scale = np.array([w / 200.0, h / 200.0], dtype=np.float32)
    scale = scale * 1.25

    return center, scale


def _inference_single_pose_model(model,
                                 img_or_path,
                                 bboxes,
                                 dataset='TopDownCocoDataset',
                                 dataset_info=None,
                                 return_heatmap=False):
    """Inference human bounding boxes.

    Note:
        - num_bboxes: N
        - num_keypoints: K

    Args:
        model (nn.Module): The loaded pose model.
        img_or_path (str | np.ndarray): Image filename or loaded image.
        bboxes (list | np.ndarray): All bounding boxes (with scores),
            shaped (N, 4) or (N, 5). (left, top, width, height, [score])
            where N is number of bounding boxes.
        dataset (str): Dataset name. Deprecated.
        dataset_info (DatasetInfo): A class containing all dataset info.
        outputs (list[str] | tuple[str]): Names of layers whose output is
            to be returned, default: None

    Returns:
        ndarray[NxKx3]: Predicted pose x, y, score.
        heatmap[N, K, H, W]: Model output heatmap.
    """

    cfg = model.cfg
    device = next(model.parameters()).device
    if device.type == 'cpu':
        device = -1

    # build the data pipeline
    test_pipeline = Compose(cfg.test_pipeline)

    assert len(bboxes[0]) in [4, 5]

    if dataset_info is not None:
        dataset_name = dataset_info.dataset_name
        flip_pairs = dataset_info.flip_pairs
    else:
        warnings.warn(
            'dataset is deprecated.'
            'Please set `dataset_info` in the config.'
            'Check https://github.com/open-mmlab/mmpose/pull/663 for details.',
            DeprecationWarning)
        # TODO: These will be removed in the later versions.
        if dataset in ('TopDownCocoDataset', 'TopDownOCHumanDataset',
                       'AnimalMacaqueDataset'):
            flip_pairs = [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12],
                          [13, 14], [15, 16]]
        elif dataset == 'TopDownCocoWholeBodyDataset':
            body = [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12],
                    [13, 14], [15, 16]]
            foot = [[17, 20], [18, 21], [19, 22]]

            face = [[23, 39], [24, 38], [25, 37], [26, 36], [27, 35], [28, 34],
                    [29, 33], [30, 32], [40, 49], [41, 48], [42, 47], [43, 46],
                    [44, 45], [54, 58], [55, 57], [59, 68], [60, 67], [61, 66],
                    [62, 65], [63, 70], [64, 69], [71, 77], [72, 76], [73, 75],
                    [78, 82], [79, 81], [83, 87], [84, 86], [88, 90]]

            hand = [[91, 112], [92, 113], [93, 114], [94, 115], [95, 116],
                    [96, 117], [97, 118], [98, 119], [99, 120], [100, 121],
                    [101, 122], [102, 123], [103, 124], [104, 125], [105, 126],
                    [106, 127], [107, 128], [108, 129], [109, 130], [110, 131],
                    [111, 132]]
            flip_pairs = body + foot + face + hand
        elif dataset == 'TopDownAicDataset':
            flip_pairs = [[0, 3], [1, 4], [2, 5], [6, 9], [7, 10], [8, 11]]
        elif dataset == 'TopDownMpiiDataset':
            flip_pairs = [[0, 5], [1, 4], [2, 3], [10, 15], [11, 14], [12, 13]]
        elif dataset == 'TopDownMpiiTrbDataset':
            flip_pairs = [[0, 1], [2, 3], [4, 5], [6, 7], [8, 9], [10, 11],
                          [14, 15], [16, 22], [28, 34], [17, 23], [29, 35],
                          [18, 24], [30, 36], [19, 25], [31, 37], [20, 26],
                          [32, 38], [21, 27], [33, 39]]
        elif dataset in ('OneHand10KDataset', 'FreiHandDataset',
                         'PanopticDataset', 'InterHand2DDataset'):
            flip_pairs = []
        elif dataset in 'Face300WDataset':
            flip_pairs = [[0, 16], [1, 15], [2, 14], [3, 13], [4, 12], [5, 11],
                          [6, 10], [7, 9], [17, 26], [18, 25], [19, 24],
                          [20, 23], [21, 22], [31, 35], [32, 34], [36, 45],
                          [37, 44], [38, 43], [39, 42], [40, 47], [41, 46],
                          [48, 54], [49, 53], [50, 52], [61, 63], [60, 64],
                          [67, 65], [58, 56], [59, 55]]

        elif dataset in 'FaceAFLWDataset':
            flip_pairs = [[0, 5], [1, 4], [2, 3], [6, 11], [7, 10], [8, 9],
                          [12, 14], [15, 17]]

        elif dataset in 'FaceCOFWDataset':
            flip_pairs = [[0, 1], [4, 6], [2, 3], [5, 7], [8, 9], [10, 11],
                          [12, 14], [16, 17], [13, 15], [18, 19], [22, 23]]

        elif dataset in 'FaceWFLWDataset':
            flip_pairs = [[0, 32], [1, 31], [2, 30], [3, 29], [4, 28], [5, 27],
                          [6, 26], [7, 25], [8, 24], [9, 23], [10, 22],
                          [11, 21], [12, 20], [13, 19], [14, 18], [15, 17],
                          [33, 46], [34, 45], [35, 44], [36, 43], [37, 42],
                          [38, 50], [39, 49], [40, 48], [41, 47], [60, 72],
                          [61, 71], [62, 70], [63, 69], [64, 68], [65, 75],
                          [66, 74], [67, 73], [55, 59], [56, 58], [76, 82],
                          [77, 81], [78, 80], [87, 83], [86, 84], [88, 92],
                          [89, 91], [95, 93], [96, 97]]

        elif dataset in 'AnimalFlyDataset':
            flip_pairs = [[1, 2], [6, 18], [7, 19], [8, 20], [9, 21], [10, 22],
                          [11, 23], [12, 24], [13, 25], [14, 26], [15, 27],
                          [16, 28], [17, 29], [30, 31]]
        elif dataset in 'AnimalHorse10Dataset':
            flip_pairs = []

        elif dataset in 'AnimalLocustDataset':
            flip_pairs = [[5, 20], [6, 21], [7, 22], [8, 23], [9, 24],
                          [10, 25], [11, 26], [12, 27], [13, 28], [14, 29],
                          [15, 30], [16, 31], [17, 32], [18, 33], [19, 34]]

        elif dataset in 'AnimalZebraDataset':
            flip_pairs = [[3, 4], [5, 6]]

        elif dataset in 'AnimalPoseDataset':
            flip_pairs = [[0, 1], [2, 3], [8, 9], [10, 11], [12, 13], [14, 15],
                          [16, 17], [18, 19]]
        else:
            raise NotImplementedError()
        dataset_name = dataset

    batch_data = []
    for bbox in bboxes:
        center, scale = _box2cs(cfg, bbox)

        # prepare data
        data = {
            'center':
            center,
            'scale':
            scale,
            'bbox_score':
            bbox[4] if len(bbox) == 5 else 1,
            'bbox_id':
            0,  # need to be assigned if batch_size > 1
            'dataset':
            dataset_name,
            'joints_3d':
            np.zeros((cfg.data_cfg.num_joints, 3), dtype=np.float32),
            'joints_3d_visible':
            np.zeros((cfg.data_cfg.num_joints, 3), dtype=np.float32),
            'rotation':
            0,
            'ann_info': {
                'image_size': np.array(cfg.data_cfg['image_size']),
                'num_joints': cfg.data_cfg['num_joints'],
                'flip_pairs': flip_pairs
            }
        }
        if isinstance(img_or_path, np.ndarray):
            data['img'] = img_or_path
        else:
            data['image_file'] = img_or_path

        data = test_pipeline(data)
        batch_data.append(data)

    batch_data = collate(batch_data, samples_per_gpu=len(batch_data))
    batch_data = scatter(batch_data, [device])[0]

    # forward the model
    with torch.no_grad():
        result = model(
            img=batch_data['img'],
            img_metas=batch_data['img_metas'],
            return_loss=False,
            return_heatmap=return_heatmap)

    return result['preds'], result['output_heatmap']


def inference_top_down_pose_model(model,
                                  img_or_path,
                                  person_results=None,
                                  bbox_thr=None,
                                  format='xywh',
                                  dataset='TopDownCocoDataset',
                                  dataset_info=None,
                                  return_heatmap=False,
                                  outputs=None):
    """Inference a single image with a list of person bounding boxes.

    Note:
        - num_people: P
        - num_keypoints: K
        - bbox height: H
        - bbox width: W

    Args:
        model (nn.Module): The loaded pose model.
        img_or_path (str| np.ndarray): Image filename or loaded image.
        person_results (list(dict), optional): a list of detected persons that
            contains ``bbox`` and/or ``track_id``:

            - ``bbox`` (4, ) or (5, ): The person bounding box, which contains
                4 box coordinates (and score).
            - ``track_id`` (int): The unique id for each human instance. If
                not provided, a dummy person result with a bbox covering
                the entire image will be used. Default: None.
        bbox_thr (float | None): Threshold for bounding boxes. Only bboxes
            with higher scores will be fed into the pose detector.
            If bbox_thr is None, all boxes will be used.
        format (str): bbox format ('xyxy' | 'xywh'). Default: 'xywh'.

            - `xyxy` means (left, top, right, bottom),
            - `xywh` means (left, top, width, height).
        dataset (str): Dataset name, e.g. 'TopDownCocoDataset'.
            It is deprecated. Please use dataset_info instead.
        dataset_info (DatasetInfo): A class containing all dataset info.
        return_heatmap (bool) : Flag to return heatmap, default: False
        outputs (list(str) | tuple(str)) : Names of layers whose outputs
            need to be returned. Default: None.

    Returns:
        tuple:
        - pose_results (list[dict]): The bbox & pose info. \
            Each item in the list is a dictionary, \
            containing the bbox: (left, top, right, bottom, [score]) \
            and the pose (ndarray[Kx3]): x, y, score.
        - returned_outputs (list[dict[np.ndarray[N, K, H, W] | \
            torch.Tensor[N, K, H, W]]]): \
            Output feature maps from layers specified in `outputs`. \
            Includes 'heatmap' if `return_heatmap` is True.
    """
    # get dataset info
    if (dataset_info is None and hasattr(model, 'cfg')
            and 'dataset_info' in model.cfg):
        dataset_info = DatasetInfo(model.cfg.dataset_info)
    if dataset_info is None:
        warnings.warn(
            'dataset is deprecated.'
            'Please set `dataset_info` in the config.'
            'Check https://github.com/open-mmlab/mmpose/pull/663'
            ' for details.', DeprecationWarning)

    # only two kinds of bbox format is supported.
    assert format in ['xyxy', 'xywh']

    pose_results = []
    returned_outputs = []

    if person_results is None:
        # create dummy person results
        if isinstance(img_or_path, str):
            width, height = Image.open(img_or_path).size
        else:
            height, width = img_or_path.shape[:2]
        person_results = [{'bbox': np.array([0, 0, width, height])}]

    if len(person_results) == 0:
        return pose_results, returned_outputs

    # Change for-loop preprocess each bbox to preprocess all bboxes at once.
    bboxes = np.array([box['bbox'] for box in person_results])

    # Select bboxes by score threshold
    if bbox_thr is not None:
        assert bboxes.shape[1] == 5
        valid_idx = np.where(bboxes[:, 4] > bbox_thr)[0]
        bboxes = bboxes[valid_idx]
        person_results = [person_results[i] for i in valid_idx]

    if format == 'xyxy':
        bboxes_xyxy = bboxes
        bboxes_xywh = _xyxy2xywh(bboxes)
    else:
        # format is already 'xywh'
        bboxes_xywh = bboxes
        bboxes_xyxy = _xywh2xyxy(bboxes)

    # if bbox_thr remove all bounding box
    if len(bboxes_xywh) == 0:
        return [], []

    with OutputHook(model, outputs=outputs, as_tensor=False) as h:
        # poses is results['pred'] # N x 17x 3
        poses, heatmap = _inference_single_pose_model(
            model,
            img_or_path,
            bboxes_xywh,
            dataset=dataset,
            dataset_info=dataset_info,
            return_heatmap=return_heatmap)

        if return_heatmap:
            h.layer_outputs['heatmap'] = heatmap

        returned_outputs.append(h.layer_outputs)

    assert len(poses) == len(person_results), print(
        len(poses), len(person_results), len(bboxes_xyxy))
    for pose, person_result, bbox_xyxy in zip(poses, person_results,
                                              bboxes_xyxy):
        pose_result = person_result.copy()
        pose_result['keypoints'] = pose
        pose_result['bbox'] = bbox_xyxy
        pose_results.append(pose_result)

    return pose_results, returned_outputs


def inference_bottom_up_pose_model(model,
                                   img_or_path,
                                   dataset='BottomUpCocoDataset',
                                   dataset_info=None,
                                   pose_nms_thr=0.9,
                                   return_heatmap=False,
                                   outputs=None):
    """Inference a single image with a bottom-up pose model.

    Note:
        - num_people: P
        - num_keypoints: K
        - bbox height: H
        - bbox width: W

    Args:
        model (nn.Module): The loaded pose model.
        img_or_path (str| np.ndarray): Image filename or loaded image.
        dataset (str): Dataset name, e.g. 'BottomUpCocoDataset'.
            It is deprecated. Please use dataset_info instead.
        dataset_info (DatasetInfo): A class containing all dataset info.
        pose_nms_thr (float): retain oks overlap < pose_nms_thr, default: 0.9.
        return_heatmap (bool) : Flag to return heatmap, default: False.
        outputs (list(str) | tuple(str)) : Names of layers whose outputs
            need to be returned, default: None.

    Returns:
        tuple:
        - pose_results (list[np.ndarray]): The predicted pose info. \
            The length of the list is the number of people (P). \
            Each item in the list is a ndarray, containing each \
            person's pose (np.ndarray[Kx3]): x, y, score.
        - returned_outputs (list[dict[np.ndarray[N, K, H, W] | \
            torch.Tensor[N, K, H, W]]]): \
            Output feature maps from layers specified in `outputs`. \
            Includes 'heatmap' if `return_heatmap` is True.
    """
    # get dataset info
    if (dataset_info is None and hasattr(model, 'cfg')
            and 'dataset_info' in model.cfg):
        dataset_info = DatasetInfo(model.cfg.dataset_info)

    if dataset_info is not None:
        dataset_name = dataset_info.dataset_name
        flip_index = dataset_info.flip_index
        sigmas = getattr(dataset_info, 'sigmas', None)
    else:
        warnings.warn(
            'dataset is deprecated.'
            'Please set `dataset_info` in the config.'
            'Check https://github.com/open-mmlab/mmpose/pull/663 for details.',
            DeprecationWarning)
        assert (dataset == 'BottomUpCocoDataset')
        dataset_name = dataset
        flip_index = [0, 2, 1, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, 16, 15]
        sigmas = None

    pose_results = []
    returned_outputs = []

    cfg = model.cfg
    device = next(model.parameters()).device
    if device.type == 'cpu':
        device = -1

    # build the data pipeline
    test_pipeline = Compose(cfg.test_pipeline)

    # prepare data
    data = {
        'dataset': dataset_name,
        'ann_info': {
            'image_size': np.array(cfg.data_cfg['image_size']),
            'num_joints': cfg.data_cfg['num_joints'],
            'flip_index': flip_index,
        }
    }
    if isinstance(img_or_path, np.ndarray):
        data['img'] = img_or_path
    else:
        data['image_file'] = img_or_path

    data = test_pipeline(data)
    data = collate([data], samples_per_gpu=1)
    data = scatter(data, [device])[0]

    with OutputHook(model, outputs=outputs, as_tensor=False) as h:
        # forward the model
        with torch.no_grad():
            result = model(
                img=data['img'],
                img_metas=data['img_metas'],
                return_loss=False,
                return_heatmap=return_heatmap)

        if return_heatmap:
            h.layer_outputs['heatmap'] = result['output_heatmap']

        returned_outputs.append(h.layer_outputs)

        for idx, pred in enumerate(result['preds']):
            area = (np.max(pred[:, 0]) - np.min(pred[:, 0])) * (
                np.max(pred[:, 1]) - np.min(pred[:, 1]))
            pose_results.append({
                'keypoints': pred[:, :3],
                'score': result['scores'][idx],
                'area': area,
            })

        # pose nms
        score_per_joint = cfg.model.test_cfg.get('score_per_joint', False)
        keep = oks_nms(
            pose_results,
            pose_nms_thr,
            sigmas,
            score_per_joint=score_per_joint)
        pose_results = [pose_results[_keep] for _keep in keep]

    return pose_results, returned_outputs


def vis_pose_result(model,
                    img,
                    result,
                    radius=4,
                    thickness=1,
                    kpt_score_thr=0.3,
                    bbox_color='green',
                    dataset='TopDownCocoDataset',
                    dataset_info=None,
                    show=False,
                    out_file=None):
    """Visualize the detection results on the image.

    Args:
        model (nn.Module): The loaded detector.
        img (str | np.ndarray): Image filename or loaded image.
        result (list[dict]): The results to draw over `img`
                (bbox_result, pose_result).
        radius (int): Radius of circles.
        thickness (int): Thickness of lines.
        kpt_score_thr (float): The threshold to visualize the keypoints.
        skeleton (list[tuple()]): Default None.
        show (bool):  Whether to show the image. Default True.
        out_file (str|None): The filename of the output visualization image.
    """

    # get dataset info
    if (dataset_info is None and hasattr(model, 'cfg')
            and 'dataset_info' in model.cfg):
        dataset_info = DatasetInfo(model.cfg.dataset_info)

    if dataset_info is not None:
        skeleton = dataset_info.skeleton
        pose_kpt_color = dataset_info.pose_kpt_color
        pose_link_color = dataset_info.pose_link_color
    else:
        warnings.warn(
            'dataset is deprecated.'
            'Please set `dataset_info` in the config.'
            'Check https://github.com/open-mmlab/mmpose/pull/663 for details.',
            DeprecationWarning)
        # TODO: These will be removed in the later versions.
        palette = np.array([[255, 128, 0], [255, 153, 51], [255, 178, 102],
                            [230, 230, 0], [255, 153, 255], [153, 204, 255],
                            [255, 102, 255], [255, 51, 255], [102, 178, 255],
                            [51, 153, 255], [255, 153, 153], [255, 102, 102],
                            [255, 51, 51], [153, 255, 153], [102, 255, 102],
                            [51, 255, 51], [0, 255, 0], [0, 0, 255],
                            [255, 0, 0], [255, 255, 255]])

        if dataset in ('TopDownCocoDataset', 'BottomUpCocoDataset',
                       'TopDownOCHumanDataset', 'AnimalMacaqueDataset'):
            # show the results
            skeleton = [[15, 13], [13, 11], [16, 14], [14, 12], [11, 12],
                        [5, 11], [6, 12], [5, 6], [5, 7], [6, 8], [7, 9],
                        [8, 10], [1, 2], [0, 1], [0, 2], [1, 3], [2, 4],
                        [3, 5], [4, 6]]

            pose_link_color = palette[[
                0, 0, 0, 0, 7, 7, 7, 9, 9, 9, 9, 9, 16, 16, 16, 16, 16, 16, 16
            ]]
            pose_kpt_color = palette[[
                16, 16, 16, 16, 16, 9, 9, 9, 9, 9, 9, 0, 0, 0, 0, 0, 0
            ]]

        elif dataset == 'TopDownCocoWholeBodyDataset':
            # show the results
            skeleton = [[15, 13], [13, 11], [16, 14], [14, 12], [11, 12],
                        [5, 11], [6, 12], [5, 6], [5, 7], [6, 8], [7, 9],
                        [8, 10], [1, 2], [0, 1], [0, 2],
                        [1, 3], [2, 4], [3, 5], [4, 6], [15, 17], [15, 18],
                        [15, 19], [16, 20], [16, 21], [16, 22], [91, 92],
                        [92, 93], [93, 94], [94, 95], [91, 96], [96, 97],
                        [97, 98], [98, 99], [91, 100], [100, 101], [101, 102],
                        [102, 103], [91, 104], [104, 105], [105, 106],
                        [106, 107], [91, 108], [108, 109], [109, 110],
                        [110, 111], [112, 113], [113, 114], [114, 115],
                        [115, 116], [112, 117], [117, 118], [118, 119],
                        [119, 120], [112, 121], [121, 122], [122, 123],
                        [123, 124], [112, 125], [125, 126], [126, 127],
                        [127, 128], [112, 129], [129, 130], [130, 131],
                        [131, 132]]

            pose_link_color = palette[[
                0, 0, 0, 0, 7, 7, 7, 9, 9, 9, 9, 9, 16, 16, 16, 16, 16, 16, 16
            ] + [16, 16, 16, 16, 16, 16] + [
                0, 0, 0, 0, 4, 4, 4, 4, 8, 8, 8, 8, 12, 12, 12, 12, 16, 16, 16,
                16
            ] + [
                0, 0, 0, 0, 4, 4, 4, 4, 8, 8, 8, 8, 12, 12, 12, 12, 16, 16, 16,
                16
            ]]
            pose_kpt_color = palette[
                [16, 16, 16, 16, 16, 9, 9, 9, 9, 9, 9, 0, 0, 0, 0, 0, 0] +
                [0, 0, 0, 0, 0, 0] + [19] * (68 + 42)]

        elif dataset == 'TopDownAicDataset':
            skeleton = [[2, 1], [1, 0], [0, 13], [13, 3], [3, 4], [4, 5],
                        [8, 7], [7, 6], [6, 9], [9, 10], [10, 11], [12, 13],
                        [0, 6], [3, 9]]

            pose_link_color = palette[[
                9, 9, 9, 9, 9, 9, 16, 16, 16, 16, 16, 0, 7, 7
            ]]
            pose_kpt_color = palette[[
                9, 9, 9, 9, 9, 9, 16, 16, 16, 16, 16, 16, 0, 0
            ]]

        elif dataset == 'TopDownMpiiDataset':
            skeleton = [[0, 1], [1, 2], [2, 6], [6, 3], [3, 4], [4, 5], [6, 7],
                        [7, 8], [8, 9], [8, 12], [12, 11], [11, 10], [8, 13],
                        [13, 14], [14, 15]]

            pose_link_color = palette[[
                16, 16, 16, 16, 16, 16, 7, 7, 0, 9, 9, 9, 9, 9, 9
            ]]
            pose_kpt_color = palette[[
                16, 16, 16, 16, 16, 16, 7, 7, 0, 0, 9, 9, 9, 9, 9, 9
            ]]

        elif dataset == 'TopDownMpiiTrbDataset':
            skeleton = [[12, 13], [13, 0], [13, 1], [0, 2], [1, 3], [2, 4],
                        [3, 5], [0, 6], [1, 7], [6, 7], [6, 8], [7,
                                                                 9], [8, 10],
                        [9, 11], [14, 15], [16, 17], [18, 19], [20, 21],
                        [22, 23], [24, 25], [26, 27], [28, 29], [30, 31],
                        [32, 33], [34, 35], [36, 37], [38, 39]]

            pose_link_color = palette[[16] * 14 + [19] * 13]
            pose_kpt_color = palette[[16] * 14 + [0] * 26]

        elif dataset in ('OneHand10KDataset', 'FreiHandDataset',
                         'PanopticDataset'):
            skeleton = [[0, 1], [1, 2], [2, 3], [3, 4], [0, 5], [5, 6], [6, 7],
                        [7, 8], [0, 9], [9, 10], [10, 11], [11, 12], [0, 13],
                        [13, 14], [14, 15], [15, 16], [0, 17], [17, 18],
                        [18, 19], [19, 20]]

            pose_link_color = palette[[
                0, 0, 0, 0, 4, 4, 4, 4, 8, 8, 8, 8, 12, 12, 12, 12, 16, 16, 16,
                16
            ]]
            pose_kpt_color = palette[[
                0, 0, 0, 0, 0, 4, 4, 4, 4, 8, 8, 8, 8, 12, 12, 12, 12, 16, 16,
                16, 16
            ]]

        elif dataset == 'InterHand2DDataset':
            skeleton = [[0, 1], [1, 2], [2, 3], [4, 5], [5, 6], [6, 7], [8, 9],
                        [9, 10], [10, 11], [12, 13], [13, 14], [14, 15],
                        [16, 17], [17, 18], [18, 19], [3, 20], [7, 20],
                        [11, 20], [15, 20], [19, 20]]

            pose_link_color = palette[[
                0, 0, 0, 4, 4, 4, 8, 8, 8, 12, 12, 12, 16, 16, 16, 0, 4, 8, 12,
                16
            ]]
            pose_kpt_color = palette[[
                0, 0, 0, 0, 4, 4, 4, 4, 8, 8, 8, 8, 12, 12, 12, 12, 16, 16, 16,
                16, 0
            ]]

        elif dataset == 'Face300WDataset':
            # show the results
            skeleton = []

            pose_link_color = palette[[]]
            pose_kpt_color = palette[[19] * 68]
            kpt_score_thr = 0

        elif dataset == 'FaceAFLWDataset':
            # show the results
            skeleton = []

            pose_link_color = palette[[]]
            pose_kpt_color = palette[[19] * 19]
            kpt_score_thr = 0

        elif dataset == 'FaceCOFWDataset':
            # show the results
            skeleton = []

            pose_link_color = palette[[]]
            pose_kpt_color = palette[[19] * 29]
            kpt_score_thr = 0

        elif dataset == 'FaceWFLWDataset':
            # show the results
            skeleton = []

            pose_link_color = palette[[]]
            pose_kpt_color = palette[[19] * 98]
            kpt_score_thr = 0

        elif dataset == 'AnimalHorse10Dataset':
            skeleton = [[0, 1], [1, 12], [12, 16], [16, 21], [21, 17],
                        [17, 11], [11, 10], [10, 8], [8, 9], [9, 12], [2, 3],
                        [3, 4], [5, 6], [6, 7], [13, 14], [14, 15], [18, 19],
                        [19, 20]]

            pose_link_color = palette[[4] * 10 + [6] * 2 + [6] * 2 + [7] * 2 +
                                      [7] * 2]
            pose_kpt_color = palette[[
                4, 4, 6, 6, 6, 6, 6, 6, 4, 4, 4, 4, 4, 7, 7, 7, 4, 4, 7, 7, 7,
                4
            ]]

        elif dataset == 'AnimalFlyDataset':
            skeleton = [[1, 0], [2, 0], [3, 0], [4, 3], [5, 4], [7, 6], [8, 7],
                        [9, 8], [11, 10], [12, 11], [13, 12], [15, 14],
                        [16, 15], [17, 16], [19, 18], [20, 19], [21, 20],
                        [23, 22], [24, 23], [25, 24], [27, 26], [28, 27],
                        [29, 28], [30, 3], [31, 3]]

            pose_link_color = palette[[0] * 25]
            pose_kpt_color = palette[[0] * 32]

        elif dataset == 'AnimalLocustDataset':
            skeleton = [[1, 0], [2, 1], [3, 2], [4, 3], [6, 5], [7, 6], [9, 8],
                        [10, 9], [11, 10], [13, 12], [14, 13], [15, 14],
                        [17, 16], [18, 17], [19, 18], [21, 20], [22, 21],
                        [24, 23], [25, 24], [26, 25], [28, 27], [29, 28],
                        [30, 29], [32, 31], [33, 32], [34, 33]]

            pose_link_color = palette[[0] * 26]
            pose_kpt_color = palette[[0] * 35]

        elif dataset == 'AnimalZebraDataset':
            skeleton = [[1, 0], [2, 1], [3, 2], [4, 2], [5, 7], [6, 7], [7, 2],
                        [8, 7]]

            pose_link_color = palette[[0] * 8]
            pose_kpt_color = palette[[0] * 9]

        elif dataset in 'AnimalPoseDataset':
            skeleton = [[0, 1], [0, 2], [1, 3], [0, 4], [1, 4], [4, 5], [5, 7],
                        [6, 7], [5, 8], [8, 12], [12, 16], [5, 9], [9, 13],
                        [13, 17], [6, 10], [10, 14], [14, 18], [6, 11],
                        [11, 15], [15, 19]]

            pose_link_color = palette[[0] * 20]
            pose_kpt_color = palette[[0] * 20]
        else:
            NotImplementedError()

    if hasattr(model, 'module'):
        model = model.module

    img = model.show_result(
        img,
        result,
        skeleton,
        radius=radius,
        thickness=thickness,
        pose_kpt_color=pose_kpt_color,
        pose_link_color=pose_link_color,
        kpt_score_thr=kpt_score_thr,
        bbox_color=bbox_color,
        show=show,
        out_file=out_file)

    return img


def process_mmdet_results(mmdet_results, cat_id=1):
    """Process mmdet results, and return a list of bboxes.

    Args:
        mmdet_results (list|tuple): mmdet results.
        cat_id (int): category id (default: 1 for human)

    Returns:
        person_results (list): a list of detected bounding boxes
    """
    if isinstance(mmdet_results, tuple):
        det_results = mmdet_results[0]
    else:
        det_results = mmdet_results

    bboxes = det_results[cat_id - 1]

    person_results = []
    for bbox in bboxes:
        person = {}
        person['bbox'] = bbox
        person_results.append(person)

    return person_results