Spaces:
Build error
Build error
File size: 32,267 Bytes
d7a991a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 |
# Copyright (c) OpenMMLab. All rights reserved.
import os
import warnings
import mmcv
import numpy as np
import torch
from mmcv.parallel import collate, scatter
from mmcv.runner import load_checkpoint
from PIL import Image
from mmpose.core.post_processing import oks_nms
from mmpose.datasets.dataset_info import DatasetInfo
from mmpose.datasets.pipelines import Compose
from mmpose.models import build_posenet
from mmpose.utils.hooks import OutputHook
os.environ['KMP_DUPLICATE_LIB_OK'] = 'TRUE'
def init_pose_model(config, checkpoint=None, device='cuda:0'):
"""Initialize a pose model from config file.
Args:
config (str or :obj:`mmcv.Config`): Config file path or the config
object.
checkpoint (str, optional): Checkpoint path. If left as None, the model
will not load any weights.
Returns:
nn.Module: The constructed detector.
"""
if isinstance(config, str):
config = mmcv.Config.fromfile(config)
elif not isinstance(config, mmcv.Config):
raise TypeError('config must be a filename or Config object, '
f'but got {type(config)}')
config.model.pretrained = None
model = build_posenet(config.model)
if checkpoint is not None:
# load model checkpoint
load_checkpoint(model, checkpoint, map_location='cpu')
# save the config in the model for convenience
model.cfg = config
model.to(device)
model.eval()
return model
def _xyxy2xywh(bbox_xyxy):
"""Transform the bbox format from x1y1x2y2 to xywh.
Args:
bbox_xyxy (np.ndarray): Bounding boxes (with scores), shaped (n, 4) or
(n, 5). (left, top, right, bottom, [score])
Returns:
np.ndarray: Bounding boxes (with scores),
shaped (n, 4) or (n, 5). (left, top, width, height, [score])
"""
bbox_xywh = bbox_xyxy.copy()
bbox_xywh[:, 2] = bbox_xywh[:, 2] - bbox_xywh[:, 0] + 1
bbox_xywh[:, 3] = bbox_xywh[:, 3] - bbox_xywh[:, 1] + 1
return bbox_xywh
def _xywh2xyxy(bbox_xywh):
"""Transform the bbox format from xywh to x1y1x2y2.
Args:
bbox_xywh (ndarray): Bounding boxes (with scores),
shaped (n, 4) or (n, 5). (left, top, width, height, [score])
Returns:
np.ndarray: Bounding boxes (with scores), shaped (n, 4) or
(n, 5). (left, top, right, bottom, [score])
"""
bbox_xyxy = bbox_xywh.copy()
bbox_xyxy[:, 2] = bbox_xyxy[:, 2] + bbox_xyxy[:, 0] - 1
bbox_xyxy[:, 3] = bbox_xyxy[:, 3] + bbox_xyxy[:, 1] - 1
return bbox_xyxy
def _box2cs(cfg, box):
"""This encodes bbox(x,y,w,h) into (center, scale)
Args:
x, y, w, h
Returns:
tuple: A tuple containing center and scale.
- np.ndarray[float32](2,): Center of the bbox (x, y).
- np.ndarray[float32](2,): Scale of the bbox w & h.
"""
x, y, w, h = box[:4]
input_size = cfg.data_cfg['image_size']
aspect_ratio = input_size[0] / input_size[1]
center = np.array([x + w * 0.5, y + h * 0.5], dtype=np.float32)
if w > aspect_ratio * h:
h = w * 1.0 / aspect_ratio
elif w < aspect_ratio * h:
w = h * aspect_ratio
# pixel std is 200.0
scale = np.array([w / 200.0, h / 200.0], dtype=np.float32)
scale = scale * 1.25
return center, scale
def _inference_single_pose_model(model,
img_or_path,
bboxes,
dataset='TopDownCocoDataset',
dataset_info=None,
return_heatmap=False):
"""Inference human bounding boxes.
Note:
- num_bboxes: N
- num_keypoints: K
Args:
model (nn.Module): The loaded pose model.
img_or_path (str | np.ndarray): Image filename or loaded image.
bboxes (list | np.ndarray): All bounding boxes (with scores),
shaped (N, 4) or (N, 5). (left, top, width, height, [score])
where N is number of bounding boxes.
dataset (str): Dataset name. Deprecated.
dataset_info (DatasetInfo): A class containing all dataset info.
outputs (list[str] | tuple[str]): Names of layers whose output is
to be returned, default: None
Returns:
ndarray[NxKx3]: Predicted pose x, y, score.
heatmap[N, K, H, W]: Model output heatmap.
"""
cfg = model.cfg
device = next(model.parameters()).device
if device.type == 'cpu':
device = -1
# build the data pipeline
test_pipeline = Compose(cfg.test_pipeline)
assert len(bboxes[0]) in [4, 5]
if dataset_info is not None:
dataset_name = dataset_info.dataset_name
flip_pairs = dataset_info.flip_pairs
else:
warnings.warn(
'dataset is deprecated.'
'Please set `dataset_info` in the config.'
'Check https://github.com/open-mmlab/mmpose/pull/663 for details.',
DeprecationWarning)
# TODO: These will be removed in the later versions.
if dataset in ('TopDownCocoDataset', 'TopDownOCHumanDataset',
'AnimalMacaqueDataset'):
flip_pairs = [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12],
[13, 14], [15, 16]]
elif dataset == 'TopDownCocoWholeBodyDataset':
body = [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12],
[13, 14], [15, 16]]
foot = [[17, 20], [18, 21], [19, 22]]
face = [[23, 39], [24, 38], [25, 37], [26, 36], [27, 35], [28, 34],
[29, 33], [30, 32], [40, 49], [41, 48], [42, 47], [43, 46],
[44, 45], [54, 58], [55, 57], [59, 68], [60, 67], [61, 66],
[62, 65], [63, 70], [64, 69], [71, 77], [72, 76], [73, 75],
[78, 82], [79, 81], [83, 87], [84, 86], [88, 90]]
hand = [[91, 112], [92, 113], [93, 114], [94, 115], [95, 116],
[96, 117], [97, 118], [98, 119], [99, 120], [100, 121],
[101, 122], [102, 123], [103, 124], [104, 125], [105, 126],
[106, 127], [107, 128], [108, 129], [109, 130], [110, 131],
[111, 132]]
flip_pairs = body + foot + face + hand
elif dataset == 'TopDownAicDataset':
flip_pairs = [[0, 3], [1, 4], [2, 5], [6, 9], [7, 10], [8, 11]]
elif dataset == 'TopDownMpiiDataset':
flip_pairs = [[0, 5], [1, 4], [2, 3], [10, 15], [11, 14], [12, 13]]
elif dataset == 'TopDownMpiiTrbDataset':
flip_pairs = [[0, 1], [2, 3], [4, 5], [6, 7], [8, 9], [10, 11],
[14, 15], [16, 22], [28, 34], [17, 23], [29, 35],
[18, 24], [30, 36], [19, 25], [31, 37], [20, 26],
[32, 38], [21, 27], [33, 39]]
elif dataset in ('OneHand10KDataset', 'FreiHandDataset',
'PanopticDataset', 'InterHand2DDataset'):
flip_pairs = []
elif dataset in 'Face300WDataset':
flip_pairs = [[0, 16], [1, 15], [2, 14], [3, 13], [4, 12], [5, 11],
[6, 10], [7, 9], [17, 26], [18, 25], [19, 24],
[20, 23], [21, 22], [31, 35], [32, 34], [36, 45],
[37, 44], [38, 43], [39, 42], [40, 47], [41, 46],
[48, 54], [49, 53], [50, 52], [61, 63], [60, 64],
[67, 65], [58, 56], [59, 55]]
elif dataset in 'FaceAFLWDataset':
flip_pairs = [[0, 5], [1, 4], [2, 3], [6, 11], [7, 10], [8, 9],
[12, 14], [15, 17]]
elif dataset in 'FaceCOFWDataset':
flip_pairs = [[0, 1], [4, 6], [2, 3], [5, 7], [8, 9], [10, 11],
[12, 14], [16, 17], [13, 15], [18, 19], [22, 23]]
elif dataset in 'FaceWFLWDataset':
flip_pairs = [[0, 32], [1, 31], [2, 30], [3, 29], [4, 28], [5, 27],
[6, 26], [7, 25], [8, 24], [9, 23], [10, 22],
[11, 21], [12, 20], [13, 19], [14, 18], [15, 17],
[33, 46], [34, 45], [35, 44], [36, 43], [37, 42],
[38, 50], [39, 49], [40, 48], [41, 47], [60, 72],
[61, 71], [62, 70], [63, 69], [64, 68], [65, 75],
[66, 74], [67, 73], [55, 59], [56, 58], [76, 82],
[77, 81], [78, 80], [87, 83], [86, 84], [88, 92],
[89, 91], [95, 93], [96, 97]]
elif dataset in 'AnimalFlyDataset':
flip_pairs = [[1, 2], [6, 18], [7, 19], [8, 20], [9, 21], [10, 22],
[11, 23], [12, 24], [13, 25], [14, 26], [15, 27],
[16, 28], [17, 29], [30, 31]]
elif dataset in 'AnimalHorse10Dataset':
flip_pairs = []
elif dataset in 'AnimalLocustDataset':
flip_pairs = [[5, 20], [6, 21], [7, 22], [8, 23], [9, 24],
[10, 25], [11, 26], [12, 27], [13, 28], [14, 29],
[15, 30], [16, 31], [17, 32], [18, 33], [19, 34]]
elif dataset in 'AnimalZebraDataset':
flip_pairs = [[3, 4], [5, 6]]
elif dataset in 'AnimalPoseDataset':
flip_pairs = [[0, 1], [2, 3], [8, 9], [10, 11], [12, 13], [14, 15],
[16, 17], [18, 19]]
else:
raise NotImplementedError()
dataset_name = dataset
batch_data = []
for bbox in bboxes:
center, scale = _box2cs(cfg, bbox)
# prepare data
data = {
'center':
center,
'scale':
scale,
'bbox_score':
bbox[4] if len(bbox) == 5 else 1,
'bbox_id':
0, # need to be assigned if batch_size > 1
'dataset':
dataset_name,
'joints_3d':
np.zeros((cfg.data_cfg.num_joints, 3), dtype=np.float32),
'joints_3d_visible':
np.zeros((cfg.data_cfg.num_joints, 3), dtype=np.float32),
'rotation':
0,
'ann_info': {
'image_size': np.array(cfg.data_cfg['image_size']),
'num_joints': cfg.data_cfg['num_joints'],
'flip_pairs': flip_pairs
}
}
if isinstance(img_or_path, np.ndarray):
data['img'] = img_or_path
else:
data['image_file'] = img_or_path
data = test_pipeline(data)
batch_data.append(data)
batch_data = collate(batch_data, samples_per_gpu=len(batch_data))
batch_data = scatter(batch_data, [device])[0]
# forward the model
with torch.no_grad():
result = model(
img=batch_data['img'],
img_metas=batch_data['img_metas'],
return_loss=False,
return_heatmap=return_heatmap)
return result['preds'], result['output_heatmap']
def inference_top_down_pose_model(model,
img_or_path,
person_results=None,
bbox_thr=None,
format='xywh',
dataset='TopDownCocoDataset',
dataset_info=None,
return_heatmap=False,
outputs=None):
"""Inference a single image with a list of person bounding boxes.
Note:
- num_people: P
- num_keypoints: K
- bbox height: H
- bbox width: W
Args:
model (nn.Module): The loaded pose model.
img_or_path (str| np.ndarray): Image filename or loaded image.
person_results (list(dict), optional): a list of detected persons that
contains ``bbox`` and/or ``track_id``:
- ``bbox`` (4, ) or (5, ): The person bounding box, which contains
4 box coordinates (and score).
- ``track_id`` (int): The unique id for each human instance. If
not provided, a dummy person result with a bbox covering
the entire image will be used. Default: None.
bbox_thr (float | None): Threshold for bounding boxes. Only bboxes
with higher scores will be fed into the pose detector.
If bbox_thr is None, all boxes will be used.
format (str): bbox format ('xyxy' | 'xywh'). Default: 'xywh'.
- `xyxy` means (left, top, right, bottom),
- `xywh` means (left, top, width, height).
dataset (str): Dataset name, e.g. 'TopDownCocoDataset'.
It is deprecated. Please use dataset_info instead.
dataset_info (DatasetInfo): A class containing all dataset info.
return_heatmap (bool) : Flag to return heatmap, default: False
outputs (list(str) | tuple(str)) : Names of layers whose outputs
need to be returned. Default: None.
Returns:
tuple:
- pose_results (list[dict]): The bbox & pose info. \
Each item in the list is a dictionary, \
containing the bbox: (left, top, right, bottom, [score]) \
and the pose (ndarray[Kx3]): x, y, score.
- returned_outputs (list[dict[np.ndarray[N, K, H, W] | \
torch.Tensor[N, K, H, W]]]): \
Output feature maps from layers specified in `outputs`. \
Includes 'heatmap' if `return_heatmap` is True.
"""
# get dataset info
if (dataset_info is None and hasattr(model, 'cfg')
and 'dataset_info' in model.cfg):
dataset_info = DatasetInfo(model.cfg.dataset_info)
if dataset_info is None:
warnings.warn(
'dataset is deprecated.'
'Please set `dataset_info` in the config.'
'Check https://github.com/open-mmlab/mmpose/pull/663'
' for details.', DeprecationWarning)
# only two kinds of bbox format is supported.
assert format in ['xyxy', 'xywh']
pose_results = []
returned_outputs = []
if person_results is None:
# create dummy person results
if isinstance(img_or_path, str):
width, height = Image.open(img_or_path).size
else:
height, width = img_or_path.shape[:2]
person_results = [{'bbox': np.array([0, 0, width, height])}]
if len(person_results) == 0:
return pose_results, returned_outputs
# Change for-loop preprocess each bbox to preprocess all bboxes at once.
bboxes = np.array([box['bbox'] for box in person_results])
# Select bboxes by score threshold
if bbox_thr is not None:
assert bboxes.shape[1] == 5
valid_idx = np.where(bboxes[:, 4] > bbox_thr)[0]
bboxes = bboxes[valid_idx]
person_results = [person_results[i] for i in valid_idx]
if format == 'xyxy':
bboxes_xyxy = bboxes
bboxes_xywh = _xyxy2xywh(bboxes)
else:
# format is already 'xywh'
bboxes_xywh = bboxes
bboxes_xyxy = _xywh2xyxy(bboxes)
# if bbox_thr remove all bounding box
if len(bboxes_xywh) == 0:
return [], []
with OutputHook(model, outputs=outputs, as_tensor=False) as h:
# poses is results['pred'] # N x 17x 3
poses, heatmap = _inference_single_pose_model(
model,
img_or_path,
bboxes_xywh,
dataset=dataset,
dataset_info=dataset_info,
return_heatmap=return_heatmap)
if return_heatmap:
h.layer_outputs['heatmap'] = heatmap
returned_outputs.append(h.layer_outputs)
assert len(poses) == len(person_results), print(
len(poses), len(person_results), len(bboxes_xyxy))
for pose, person_result, bbox_xyxy in zip(poses, person_results,
bboxes_xyxy):
pose_result = person_result.copy()
pose_result['keypoints'] = pose
pose_result['bbox'] = bbox_xyxy
pose_results.append(pose_result)
return pose_results, returned_outputs
def inference_bottom_up_pose_model(model,
img_or_path,
dataset='BottomUpCocoDataset',
dataset_info=None,
pose_nms_thr=0.9,
return_heatmap=False,
outputs=None):
"""Inference a single image with a bottom-up pose model.
Note:
- num_people: P
- num_keypoints: K
- bbox height: H
- bbox width: W
Args:
model (nn.Module): The loaded pose model.
img_or_path (str| np.ndarray): Image filename or loaded image.
dataset (str): Dataset name, e.g. 'BottomUpCocoDataset'.
It is deprecated. Please use dataset_info instead.
dataset_info (DatasetInfo): A class containing all dataset info.
pose_nms_thr (float): retain oks overlap < pose_nms_thr, default: 0.9.
return_heatmap (bool) : Flag to return heatmap, default: False.
outputs (list(str) | tuple(str)) : Names of layers whose outputs
need to be returned, default: None.
Returns:
tuple:
- pose_results (list[np.ndarray]): The predicted pose info. \
The length of the list is the number of people (P). \
Each item in the list is a ndarray, containing each \
person's pose (np.ndarray[Kx3]): x, y, score.
- returned_outputs (list[dict[np.ndarray[N, K, H, W] | \
torch.Tensor[N, K, H, W]]]): \
Output feature maps from layers specified in `outputs`. \
Includes 'heatmap' if `return_heatmap` is True.
"""
# get dataset info
if (dataset_info is None and hasattr(model, 'cfg')
and 'dataset_info' in model.cfg):
dataset_info = DatasetInfo(model.cfg.dataset_info)
if dataset_info is not None:
dataset_name = dataset_info.dataset_name
flip_index = dataset_info.flip_index
sigmas = getattr(dataset_info, 'sigmas', None)
else:
warnings.warn(
'dataset is deprecated.'
'Please set `dataset_info` in the config.'
'Check https://github.com/open-mmlab/mmpose/pull/663 for details.',
DeprecationWarning)
assert (dataset == 'BottomUpCocoDataset')
dataset_name = dataset
flip_index = [0, 2, 1, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, 16, 15]
sigmas = None
pose_results = []
returned_outputs = []
cfg = model.cfg
device = next(model.parameters()).device
if device.type == 'cpu':
device = -1
# build the data pipeline
test_pipeline = Compose(cfg.test_pipeline)
# prepare data
data = {
'dataset': dataset_name,
'ann_info': {
'image_size': np.array(cfg.data_cfg['image_size']),
'num_joints': cfg.data_cfg['num_joints'],
'flip_index': flip_index,
}
}
if isinstance(img_or_path, np.ndarray):
data['img'] = img_or_path
else:
data['image_file'] = img_or_path
data = test_pipeline(data)
data = collate([data], samples_per_gpu=1)
data = scatter(data, [device])[0]
with OutputHook(model, outputs=outputs, as_tensor=False) as h:
# forward the model
with torch.no_grad():
result = model(
img=data['img'],
img_metas=data['img_metas'],
return_loss=False,
return_heatmap=return_heatmap)
if return_heatmap:
h.layer_outputs['heatmap'] = result['output_heatmap']
returned_outputs.append(h.layer_outputs)
for idx, pred in enumerate(result['preds']):
area = (np.max(pred[:, 0]) - np.min(pred[:, 0])) * (
np.max(pred[:, 1]) - np.min(pred[:, 1]))
pose_results.append({
'keypoints': pred[:, :3],
'score': result['scores'][idx],
'area': area,
})
# pose nms
score_per_joint = cfg.model.test_cfg.get('score_per_joint', False)
keep = oks_nms(
pose_results,
pose_nms_thr,
sigmas,
score_per_joint=score_per_joint)
pose_results = [pose_results[_keep] for _keep in keep]
return pose_results, returned_outputs
def vis_pose_result(model,
img,
result,
radius=4,
thickness=1,
kpt_score_thr=0.3,
bbox_color='green',
dataset='TopDownCocoDataset',
dataset_info=None,
show=False,
out_file=None):
"""Visualize the detection results on the image.
Args:
model (nn.Module): The loaded detector.
img (str | np.ndarray): Image filename or loaded image.
result (list[dict]): The results to draw over `img`
(bbox_result, pose_result).
radius (int): Radius of circles.
thickness (int): Thickness of lines.
kpt_score_thr (float): The threshold to visualize the keypoints.
skeleton (list[tuple()]): Default None.
show (bool): Whether to show the image. Default True.
out_file (str|None): The filename of the output visualization image.
"""
# get dataset info
if (dataset_info is None and hasattr(model, 'cfg')
and 'dataset_info' in model.cfg):
dataset_info = DatasetInfo(model.cfg.dataset_info)
if dataset_info is not None:
skeleton = dataset_info.skeleton
pose_kpt_color = dataset_info.pose_kpt_color
pose_link_color = dataset_info.pose_link_color
else:
warnings.warn(
'dataset is deprecated.'
'Please set `dataset_info` in the config.'
'Check https://github.com/open-mmlab/mmpose/pull/663 for details.',
DeprecationWarning)
# TODO: These will be removed in the later versions.
palette = np.array([[255, 128, 0], [255, 153, 51], [255, 178, 102],
[230, 230, 0], [255, 153, 255], [153, 204, 255],
[255, 102, 255], [255, 51, 255], [102, 178, 255],
[51, 153, 255], [255, 153, 153], [255, 102, 102],
[255, 51, 51], [153, 255, 153], [102, 255, 102],
[51, 255, 51], [0, 255, 0], [0, 0, 255],
[255, 0, 0], [255, 255, 255]])
if dataset in ('TopDownCocoDataset', 'BottomUpCocoDataset',
'TopDownOCHumanDataset', 'AnimalMacaqueDataset'):
# show the results
skeleton = [[15, 13], [13, 11], [16, 14], [14, 12], [11, 12],
[5, 11], [6, 12], [5, 6], [5, 7], [6, 8], [7, 9],
[8, 10], [1, 2], [0, 1], [0, 2], [1, 3], [2, 4],
[3, 5], [4, 6]]
pose_link_color = palette[[
0, 0, 0, 0, 7, 7, 7, 9, 9, 9, 9, 9, 16, 16, 16, 16, 16, 16, 16
]]
pose_kpt_color = palette[[
16, 16, 16, 16, 16, 9, 9, 9, 9, 9, 9, 0, 0, 0, 0, 0, 0
]]
elif dataset == 'TopDownCocoWholeBodyDataset':
# show the results
skeleton = [[15, 13], [13, 11], [16, 14], [14, 12], [11, 12],
[5, 11], [6, 12], [5, 6], [5, 7], [6, 8], [7, 9],
[8, 10], [1, 2], [0, 1], [0, 2],
[1, 3], [2, 4], [3, 5], [4, 6], [15, 17], [15, 18],
[15, 19], [16, 20], [16, 21], [16, 22], [91, 92],
[92, 93], [93, 94], [94, 95], [91, 96], [96, 97],
[97, 98], [98, 99], [91, 100], [100, 101], [101, 102],
[102, 103], [91, 104], [104, 105], [105, 106],
[106, 107], [91, 108], [108, 109], [109, 110],
[110, 111], [112, 113], [113, 114], [114, 115],
[115, 116], [112, 117], [117, 118], [118, 119],
[119, 120], [112, 121], [121, 122], [122, 123],
[123, 124], [112, 125], [125, 126], [126, 127],
[127, 128], [112, 129], [129, 130], [130, 131],
[131, 132]]
pose_link_color = palette[[
0, 0, 0, 0, 7, 7, 7, 9, 9, 9, 9, 9, 16, 16, 16, 16, 16, 16, 16
] + [16, 16, 16, 16, 16, 16] + [
0, 0, 0, 0, 4, 4, 4, 4, 8, 8, 8, 8, 12, 12, 12, 12, 16, 16, 16,
16
] + [
0, 0, 0, 0, 4, 4, 4, 4, 8, 8, 8, 8, 12, 12, 12, 12, 16, 16, 16,
16
]]
pose_kpt_color = palette[
[16, 16, 16, 16, 16, 9, 9, 9, 9, 9, 9, 0, 0, 0, 0, 0, 0] +
[0, 0, 0, 0, 0, 0] + [19] * (68 + 42)]
elif dataset == 'TopDownAicDataset':
skeleton = [[2, 1], [1, 0], [0, 13], [13, 3], [3, 4], [4, 5],
[8, 7], [7, 6], [6, 9], [9, 10], [10, 11], [12, 13],
[0, 6], [3, 9]]
pose_link_color = palette[[
9, 9, 9, 9, 9, 9, 16, 16, 16, 16, 16, 0, 7, 7
]]
pose_kpt_color = palette[[
9, 9, 9, 9, 9, 9, 16, 16, 16, 16, 16, 16, 0, 0
]]
elif dataset == 'TopDownMpiiDataset':
skeleton = [[0, 1], [1, 2], [2, 6], [6, 3], [3, 4], [4, 5], [6, 7],
[7, 8], [8, 9], [8, 12], [12, 11], [11, 10], [8, 13],
[13, 14], [14, 15]]
pose_link_color = palette[[
16, 16, 16, 16, 16, 16, 7, 7, 0, 9, 9, 9, 9, 9, 9
]]
pose_kpt_color = palette[[
16, 16, 16, 16, 16, 16, 7, 7, 0, 0, 9, 9, 9, 9, 9, 9
]]
elif dataset == 'TopDownMpiiTrbDataset':
skeleton = [[12, 13], [13, 0], [13, 1], [0, 2], [1, 3], [2, 4],
[3, 5], [0, 6], [1, 7], [6, 7], [6, 8], [7,
9], [8, 10],
[9, 11], [14, 15], [16, 17], [18, 19], [20, 21],
[22, 23], [24, 25], [26, 27], [28, 29], [30, 31],
[32, 33], [34, 35], [36, 37], [38, 39]]
pose_link_color = palette[[16] * 14 + [19] * 13]
pose_kpt_color = palette[[16] * 14 + [0] * 26]
elif dataset in ('OneHand10KDataset', 'FreiHandDataset',
'PanopticDataset'):
skeleton = [[0, 1], [1, 2], [2, 3], [3, 4], [0, 5], [5, 6], [6, 7],
[7, 8], [0, 9], [9, 10], [10, 11], [11, 12], [0, 13],
[13, 14], [14, 15], [15, 16], [0, 17], [17, 18],
[18, 19], [19, 20]]
pose_link_color = palette[[
0, 0, 0, 0, 4, 4, 4, 4, 8, 8, 8, 8, 12, 12, 12, 12, 16, 16, 16,
16
]]
pose_kpt_color = palette[[
0, 0, 0, 0, 0, 4, 4, 4, 4, 8, 8, 8, 8, 12, 12, 12, 12, 16, 16,
16, 16
]]
elif dataset == 'InterHand2DDataset':
skeleton = [[0, 1], [1, 2], [2, 3], [4, 5], [5, 6], [6, 7], [8, 9],
[9, 10], [10, 11], [12, 13], [13, 14], [14, 15],
[16, 17], [17, 18], [18, 19], [3, 20], [7, 20],
[11, 20], [15, 20], [19, 20]]
pose_link_color = palette[[
0, 0, 0, 4, 4, 4, 8, 8, 8, 12, 12, 12, 16, 16, 16, 0, 4, 8, 12,
16
]]
pose_kpt_color = palette[[
0, 0, 0, 0, 4, 4, 4, 4, 8, 8, 8, 8, 12, 12, 12, 12, 16, 16, 16,
16, 0
]]
elif dataset == 'Face300WDataset':
# show the results
skeleton = []
pose_link_color = palette[[]]
pose_kpt_color = palette[[19] * 68]
kpt_score_thr = 0
elif dataset == 'FaceAFLWDataset':
# show the results
skeleton = []
pose_link_color = palette[[]]
pose_kpt_color = palette[[19] * 19]
kpt_score_thr = 0
elif dataset == 'FaceCOFWDataset':
# show the results
skeleton = []
pose_link_color = palette[[]]
pose_kpt_color = palette[[19] * 29]
kpt_score_thr = 0
elif dataset == 'FaceWFLWDataset':
# show the results
skeleton = []
pose_link_color = palette[[]]
pose_kpt_color = palette[[19] * 98]
kpt_score_thr = 0
elif dataset == 'AnimalHorse10Dataset':
skeleton = [[0, 1], [1, 12], [12, 16], [16, 21], [21, 17],
[17, 11], [11, 10], [10, 8], [8, 9], [9, 12], [2, 3],
[3, 4], [5, 6], [6, 7], [13, 14], [14, 15], [18, 19],
[19, 20]]
pose_link_color = palette[[4] * 10 + [6] * 2 + [6] * 2 + [7] * 2 +
[7] * 2]
pose_kpt_color = palette[[
4, 4, 6, 6, 6, 6, 6, 6, 4, 4, 4, 4, 4, 7, 7, 7, 4, 4, 7, 7, 7,
4
]]
elif dataset == 'AnimalFlyDataset':
skeleton = [[1, 0], [2, 0], [3, 0], [4, 3], [5, 4], [7, 6], [8, 7],
[9, 8], [11, 10], [12, 11], [13, 12], [15, 14],
[16, 15], [17, 16], [19, 18], [20, 19], [21, 20],
[23, 22], [24, 23], [25, 24], [27, 26], [28, 27],
[29, 28], [30, 3], [31, 3]]
pose_link_color = palette[[0] * 25]
pose_kpt_color = palette[[0] * 32]
elif dataset == 'AnimalLocustDataset':
skeleton = [[1, 0], [2, 1], [3, 2], [4, 3], [6, 5], [7, 6], [9, 8],
[10, 9], [11, 10], [13, 12], [14, 13], [15, 14],
[17, 16], [18, 17], [19, 18], [21, 20], [22, 21],
[24, 23], [25, 24], [26, 25], [28, 27], [29, 28],
[30, 29], [32, 31], [33, 32], [34, 33]]
pose_link_color = palette[[0] * 26]
pose_kpt_color = palette[[0] * 35]
elif dataset == 'AnimalZebraDataset':
skeleton = [[1, 0], [2, 1], [3, 2], [4, 2], [5, 7], [6, 7], [7, 2],
[8, 7]]
pose_link_color = palette[[0] * 8]
pose_kpt_color = palette[[0] * 9]
elif dataset in 'AnimalPoseDataset':
skeleton = [[0, 1], [0, 2], [1, 3], [0, 4], [1, 4], [4, 5], [5, 7],
[6, 7], [5, 8], [8, 12], [12, 16], [5, 9], [9, 13],
[13, 17], [6, 10], [10, 14], [14, 18], [6, 11],
[11, 15], [15, 19]]
pose_link_color = palette[[0] * 20]
pose_kpt_color = palette[[0] * 20]
else:
NotImplementedError()
if hasattr(model, 'module'):
model = model.module
img = model.show_result(
img,
result,
skeleton,
radius=radius,
thickness=thickness,
pose_kpt_color=pose_kpt_color,
pose_link_color=pose_link_color,
kpt_score_thr=kpt_score_thr,
bbox_color=bbox_color,
show=show,
out_file=out_file)
return img
def process_mmdet_results(mmdet_results, cat_id=1):
"""Process mmdet results, and return a list of bboxes.
Args:
mmdet_results (list|tuple): mmdet results.
cat_id (int): category id (default: 1 for human)
Returns:
person_results (list): a list of detected bounding boxes
"""
if isinstance(mmdet_results, tuple):
det_results = mmdet_results[0]
else:
det_results = mmdet_results
bboxes = det_results[cat_id - 1]
person_results = []
for bbox in bboxes:
person = {}
person['bbox'] = bbox
person_results.append(person)
return person_results
|