Spaces:
Runtime error
Runtime error
File size: 9,008 Bytes
1decf14 87d5615 f7ca36c 2414dea 1decf14 28951d0 1decf14 87d5615 dd87ecd 2414dea 2631076 2414dea dd87ecd 2414dea dd87ecd 92be4b9 1decf14 28951d0 1decf14 28951d0 1decf14 dd87ecd 1decf14 dd87ecd 1decf14 dd87ecd 1decf14 dd87ecd 1decf14 dd87ecd 1decf14 dd87ecd 1decf14 dd87ecd 1decf14 dd87ecd 28951d0 dd87ecd 1decf14 dd87ecd 28951d0 82660a6 28951d0 dd87ecd 1decf14 dd87ecd 1decf14 dd87ecd cc00572 f7ca36c dd87ecd f7ca36c dd87ecd f7ca36c dd87ecd f7ca36c dd87ecd f7ca36c dd87ecd f7ca36c e387f6f dd87ecd 2631076 dd87ecd e387f6f dd87ecd e387f6f 34cc4af dd87ecd 2631076 dd87ecd 42cb2f7 dd87ecd 2631076 dd87ecd 42cb2f7 dd87ecd 42cb2f7 dd87ecd 42cb2f7 1decf14 dd87ecd 1decf14 dd87ecd 42cb2f7 dd87ecd b06718d dd87ecd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 |
import spacy
import streamlit as st
import re
import logging
from presidio_anonymizer import AnonymizerEngine
from presidio_analyzer import AnalyzerEngine, PatternRecognizer
from annotated_text import annotated_text
from flair_recognizer import FlairRecognizer
###############################
#### Render Streamlit page ####
###############################
st.title("Anonymise your text!")
st.markdown(
"This mini-app anonymises text using Flair. You can find the code in the Files and versions tab above."
)
# Configure logger
logging.basicConfig(format="\n%(asctime)s\n%(message)s", level=logging.INFO, force=True)
##############################
###### Define functions ######
##############################
@st.cache(allow_output_mutation=True,show_spinner=False)
def analyzer_engine():
"""Return AnalyzerEngine."""
analyzer = AnalyzerEngine()
flair_recognizer = FlairRecognizer()
analyzer.registry.add_recognizer(flair_recognizer)
return analyzer
def analyze(**kwargs):
"""Analyze input using Analyzer engine and input arguments (kwargs)."""
analyzer_engine = analyzer_engine()
if "entities" not in kwargs or "All" in kwargs["entities"]:
kwargs["entities"] = None
if st.session_state.excluded_words:
excluded_words_recognizer = PatternRecognizer(supported_entity="MANUAL ADD",
deny_list=st.session_state.excluded_words)
analyzer_engine.registry.add_recognizer(excluded_words_recognizer)
return analyzer_engine.analyze(**kwargs)
def annotate():
text = st.session_state.text
analyze_results = st.session_state.analyze_results
tokens = []
starts=[]
# sort by start index
results = sorted(analyze_results, key=lambda x: x.start)
for i, res in enumerate(results):
# if we already have an entity for this token don't add another
if res.start not in starts:
if i == 0:
tokens.append(text[:res.start])
# append entity text and entity type
tokens.append((text[res.start: res.end], res.entity_type))
# if another entity coming i.e. we're not at the last results element, add text up to next entity
if i != len(results) - 1:
tokens.append(text[res.end:results[i+1].start])
# if no more entities coming, add all remaining text
else:
tokens.append(text[res.end:])
# append this token to the list so we don't repeat results per token
starts.append(res.start)
return tokens
def get_supported_entities():
"""Return supported entities from the Analyzer Engine."""
return analyzer_engine().get_supported_entities()
def analyze_text():
if not st.session_state.text:
st.session_state.text_error = "Please enter your text"
return
with text_spinner_placeholder:
with st.spinner("Please wait while your text is being analysed..."):
logging.info(f"This is the text being analysed: {st.session_state.text}")
st.session_state.text_error = ""
st.session_state.n_requests += 1
analyze_results = analyze(
text=st.session_state.text,
entities=st_entities,
language="en",
return_decision_process=False,
)
# if st.session_state.excluded_words:
# analyze_results = include_manual_input(analyze_results)
if st.session_state.allowed_words:
analyze_results = exclude_manual_input(analyze_results)
st.session_state.analyze_results = analyze_results
logging.info(
f"analyse results: {st.session_state.analyze_results}\n"
)
# def include_manual_input(analyze_results):
# analyze_results_extended=analyze_results
# logging.info(
# f"analyse results before adding extra words: {analyze_results}\n"
# )
# for word in st.session_state.excluded_words:
# if word in st.session_state.text:
# r = re.compile(word)
# index_entries = [[m.start(),m.end()] for m in r.finditer(st.session_state.text)]
# for entry in index_entries:
# start=entry[0]
# end=entry[1]
# analyze_results_extended.append("type": "MANUAL ADD", "start": start, "end": end, "score": 1.0})
# logging.info(
# f"analyse results after adding allowed words: {analyze_results_extended}\n"
# )
# logging.info(
# f"type of entries in results: {type(analyze_results[0])}\n"
# )
# return analyze_results_extended
def exclude_manual_input(analyze_results):
analyze_results_fltered=[]
logging.info(
f"analyse results before removing allowed words: {analyze_results}\n"
)
for token in analyze_results:
if st.session_state.text[token.start:token.end] not in st.session_state.allowed_words:
analyze_results_fltered.append(token)
logging.info(
f"analyse results after removing allowed words: {analyze_results_fltered}\n"
)
return analyze_results_fltered
@st.cache(allow_output_mutation=True)
def anonymizer_engine():
"""Return AnonymizerEngine."""
return AnonymizerEngine()
def anonymise_text():
if st.session_state.n_requests >= 50:
st.session_state.text_error = "Too many requests. Please wait a few seconds before anonymising more text."
logging.info(f"Session request limit reached: {st.session_state.n_requests}")
st.session_state.n_requests = 1
st.session_state.text_error = ""
if not st.session_state.text:
st.session_state.text_error = "Please enter your text"
return
if not st.session_state.analyze_results:
analyze_text()
with text_spinner_placeholder:
with st.spinner("Please wait while your text is being anonymised..."):
anon_results = anonymizer_engine().anonymize(st.session_state.text, st.session_state.analyze_results)
st.session_state.text_error = ""
st.session_state.n_requests += 1
st.session_state.anon_results = anon_results
logging.info(
f"text anonymised: {st.session_state.anon_results}"
)
def clear_results():
st.session_state.anon_results=""
st.session_state.analyze_results=""
#######################################
#### Initialize "global" variables ####
#######################################
if "text_error" not in st.session_state:
st.session_state.text_error = ""
if "analyze_results" not in st.session_state:
st.session_state.analyze_results = ""
if "anon_results" not in st.session_state:
st.session_state.anon_results = ""
if "n_requests" not in st.session_state:
st.session_state.n_requests = 0
##############################
####### Page arguments #######
##############################
# Every widget with a key is automatically added to Session State as a global variable.
# In Streamlit, interacting with a widget triggers a rerun and variables defined
# in the code get reinitialized after each rerun.
# If a callback function is associated with a widget then a change in the widget
# triggers the following sequence: First the callback function is executed and then
# the app executes from top to bottom.
st.text_input(
label="Text",
placeholder="Write your text here",
key='text',
on_change=clear_results
)
st.text_input(
label="Data to be redacted (optional)",
placeholder="John, Mary, London",
key='excluded_words',
on_change=clear_results
)
st.text_input(
label="Data to be ignored (optional)",
placeholder="NHS, GEL, Lab",
key='allowed_words',
on_change=clear_results
)
st_entities = st.sidebar.multiselect(
label="Which entities to look for?",
options=get_supported_entities(),
default=list(get_supported_entities()),
)
##############################
######## Page buttons ########
##############################
# button return true when clicked
col1, col2 = st.columns(2)
with col1:
analyze_now = st.button(
label="Analyse text",
type="primary",
on_click=analyze_text,
)
with col2:
anonymise_now = st.button(
label="Anonymise text",
type="primary",
on_click=anonymise_text,
)
##############################
######## Page actions ########
##############################
text_spinner_placeholder = st.empty()
if st.session_state.text_error:
st.error(st.session_state.text_error)
with col1:
if st.session_state.analyze_results:
annotated_tokens=annotate()
annotated_text(*annotated_tokens)
st.write(st.session_state.analyze_results)
with col2:
if st.session_state.anon_results:
st.write(st.session_state.anon_results.text) |