Spaces:
Runtime error
Runtime error
arogeriogel
commited on
Commit
•
dd87ecd
1
Parent(s):
1decf14
adding meatdata and allowed lists
Browse files
app.py
CHANGED
@@ -1,35 +1,33 @@
|
|
1 |
import spacy
|
2 |
import streamlit as st
|
3 |
-
from flair.data import Sentence
|
4 |
-
from flair.models import SequenceTagger
|
5 |
import re
|
6 |
import logging
|
7 |
-
from presidio_analyzer.nlp_engine import NlpEngineProvider
|
8 |
from presidio_anonymizer import AnonymizerEngine
|
9 |
from presidio_analyzer import AnalyzerEngine, RecognizerRegistry
|
10 |
from annotated_text import annotated_text
|
11 |
from flair_recognizer import FlairRecognizer
|
12 |
|
13 |
-
|
|
|
|
|
|
|
|
|
14 |
st.title("Anonymise your text!")
|
15 |
st.markdown(
|
16 |
"This mini-app anonymises text using Flair. You can find the code on [GitHub(WIP)](#)"
|
17 |
)
|
|
|
18 |
# Configure logger
|
19 |
logging.basicConfig(format="\n%(asctime)s\n%(message)s", level=logging.INFO, force=True)
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
|
|
|
24 |
|
25 |
@st.cache(allow_output_mutation=True,show_spinner=False)
|
26 |
def analyzer_engine():
|
27 |
"""Return AnalyzerEngine."""
|
28 |
-
# registry = RecognizerRegistry()
|
29 |
-
# flair_recognizer = FlairRecognizer()
|
30 |
-
# registry.load_predefined_recognizers()
|
31 |
-
# registry.add_recognizer(flair_recognizer)
|
32 |
-
# analyzer = AnalyzerEngine(registry=registry, supported_languages=["en"])
|
33 |
analyzer = AnalyzerEngine()
|
34 |
flair_recognizer = FlairRecognizer()
|
35 |
analyzer.registry.add_recognizer(flair_recognizer)
|
@@ -42,143 +40,215 @@ def analyze(**kwargs):
|
|
42 |
kwargs["entities"] = None
|
43 |
return analyzer_engine().analyze(**kwargs)
|
44 |
|
45 |
-
def annotate(
|
|
|
|
|
46 |
tokens = []
|
|
|
47 |
# sort by start index
|
48 |
results = sorted(analyze_results, key=lambda x: x.start)
|
49 |
for i, res in enumerate(results):
|
50 |
-
if
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
|
|
|
|
|
|
|
|
|
|
62 |
return tokens
|
63 |
|
64 |
def get_supported_entities():
|
65 |
"""Return supported entities from the Analyzer Engine."""
|
66 |
return analyzer_engine().get_supported_entities()
|
67 |
|
68 |
-
|
69 |
-
|
70 |
-
options=get_supported_entities(),
|
71 |
-
default=list(get_supported_entities()),
|
72 |
-
)
|
73 |
-
|
74 |
-
def analyze_text(text: str, st_entities: str):
|
75 |
-
if not text:
|
76 |
st.session_state.text_error = "Please enter your text"
|
77 |
return
|
78 |
-
|
79 |
with text_spinner_placeholder:
|
80 |
with st.spinner("Please wait while your text is being analysed..."):
|
81 |
-
logging.info(f"This is the text being analysed: {text}")
|
|
|
|
|
82 |
analyze_results = analyze(
|
83 |
-
text=text,
|
84 |
entities=st_entities,
|
85 |
language="en",
|
86 |
return_decision_process=False,
|
87 |
)
|
88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
-
# st.session_state.text_analys=annotated_text(*annotated_tokens)
|
91 |
logging.info(
|
92 |
-
f"
|
93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
|
96 |
-
def anonymise_text(
|
97 |
-
"""anonymise text"""
|
98 |
if st.session_state.n_requests >= 50:
|
99 |
st.session_state.text_error = "Too many requests. Please wait a few seconds before anonymising more text."
|
100 |
logging.info(f"Session request limit reached: {st.session_state.n_requests}")
|
101 |
st.session_state.n_requests = 1
|
102 |
-
return
|
103 |
|
104 |
-
st.session_state.text = ""
|
105 |
st.session_state.text_error = ""
|
106 |
|
107 |
-
if not text:
|
108 |
st.session_state.text_error = "Please enter your text"
|
109 |
return
|
110 |
-
|
|
|
|
|
|
|
111 |
with text_spinner_placeholder:
|
112 |
with st.spinner("Please wait while your text is being anonymised..."):
|
113 |
-
|
114 |
-
# flagged = openai.moderate(prompt)
|
115 |
-
# if flagged:
|
116 |
-
# st.session_state.text_error = "Input flagged as inappropriate."
|
117 |
-
# logging.info(f"Topic: {topic}{mood_output}{style_output}\n")
|
118 |
-
# return
|
119 |
-
|
120 |
-
# else:
|
121 |
-
# load tagger
|
122 |
-
tagger = load_tagger()
|
123 |
-
# tagger = load_tagger()
|
124 |
-
sentence = Sentence(text)
|
125 |
-
# predict NER tags
|
126 |
-
tagger.predict(sentence)
|
127 |
-
# iterate over entities and redact
|
128 |
-
enitities=[e.text for e in sentence.get_spans('ner')]
|
129 |
-
regex = re.compile('|'.join(map(re.escape, enitities)))
|
130 |
-
text_anon = regex.sub("<PID>", text)
|
131 |
-
|
132 |
st.session_state.text_error = ""
|
133 |
st.session_state.n_requests += 1
|
134 |
-
st.session_state.
|
135 |
logging.info(
|
136 |
-
f"text: {
|
137 |
-
f"entities: {sentence.get_spans('ner')}\n"
|
138 |
-
f"text anonymised: {st.session_state.text_anon}"
|
139 |
)
|
140 |
|
141 |
-
|
142 |
-
st.session_state.
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
if "text_error" not in st.session_state:
|
144 |
st.session_state.text_error = ""
|
145 |
-
if "
|
146 |
-
st.session_state.
|
147 |
-
if "
|
148 |
-
st.session_state.
|
149 |
if "n_requests" not in st.session_state:
|
150 |
st.session_state.n_requests = 0
|
151 |
|
152 |
-
|
153 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
label="Data to be redacted (optional)",
|
155 |
-
placeholder="
|
|
|
|
|
156 |
)
|
157 |
-
|
158 |
label="Data to be ignored (optional)",
|
159 |
-
placeholder="
|
|
|
|
|
160 |
)
|
161 |
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
on_click=analyze_text,
|
167 |
-
args=(text,st_entities,),
|
168 |
)
|
|
|
|
|
|
|
|
|
|
|
169 |
# button return true when clicked
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
176 |
text_spinner_placeholder = st.empty()
|
177 |
if st.session_state.text_error:
|
178 |
st.error(st.session_state.text_error)
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
|
|
|
|
|
|
|
1 |
import spacy
|
2 |
import streamlit as st
|
|
|
|
|
3 |
import re
|
4 |
import logging
|
|
|
5 |
from presidio_anonymizer import AnonymizerEngine
|
6 |
from presidio_analyzer import AnalyzerEngine, RecognizerRegistry
|
7 |
from annotated_text import annotated_text
|
8 |
from flair_recognizer import FlairRecognizer
|
9 |
|
10 |
+
|
11 |
+
###############################
|
12 |
+
#### Render Streamlit page ####
|
13 |
+
###############################
|
14 |
+
|
15 |
st.title("Anonymise your text!")
|
16 |
st.markdown(
|
17 |
"This mini-app anonymises text using Flair. You can find the code on [GitHub(WIP)](#)"
|
18 |
)
|
19 |
+
|
20 |
# Configure logger
|
21 |
logging.basicConfig(format="\n%(asctime)s\n%(message)s", level=logging.INFO, force=True)
|
22 |
|
23 |
+
|
24 |
+
##############################
|
25 |
+
###### Define functions ######
|
26 |
+
##############################
|
27 |
|
28 |
@st.cache(allow_output_mutation=True,show_spinner=False)
|
29 |
def analyzer_engine():
|
30 |
"""Return AnalyzerEngine."""
|
|
|
|
|
|
|
|
|
|
|
31 |
analyzer = AnalyzerEngine()
|
32 |
flair_recognizer = FlairRecognizer()
|
33 |
analyzer.registry.add_recognizer(flair_recognizer)
|
|
|
40 |
kwargs["entities"] = None
|
41 |
return analyzer_engine().analyze(**kwargs)
|
42 |
|
43 |
+
def annotate():
|
44 |
+
text = st.session_state.text
|
45 |
+
analyze_results = st.session_state.analyze_results
|
46 |
tokens = []
|
47 |
+
starts=[]
|
48 |
# sort by start index
|
49 |
results = sorted(analyze_results, key=lambda x: x.start)
|
50 |
for i, res in enumerate(results):
|
51 |
+
# if we already have an entity for this token don't add another
|
52 |
+
if res.start not in starts:
|
53 |
+
if i == 0:
|
54 |
+
tokens.append(text[:res.start])
|
55 |
+
|
56 |
+
# append entity text and entity type
|
57 |
+
tokens.append((text[res.start: res.end], res.entity_type))
|
58 |
+
|
59 |
+
# if another entity coming i.e. we're not at the last results element, add text up to next entity
|
60 |
+
if i != len(results) - 1:
|
61 |
+
tokens.append(text[res.end:results[i+1].start])
|
62 |
+
# if no more entities coming, add all remaining text
|
63 |
+
else:
|
64 |
+
tokens.append(text[res.end:])
|
65 |
+
|
66 |
+
# append this token to the list so we don't repeat results per token
|
67 |
+
starts.append(res.start)
|
68 |
return tokens
|
69 |
|
70 |
def get_supported_entities():
|
71 |
"""Return supported entities from the Analyzer Engine."""
|
72 |
return analyzer_engine().get_supported_entities()
|
73 |
|
74 |
+
def analyze_text():
|
75 |
+
if not st.session_state.text:
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
st.session_state.text_error = "Please enter your text"
|
77 |
return
|
78 |
+
|
79 |
with text_spinner_placeholder:
|
80 |
with st.spinner("Please wait while your text is being analysed..."):
|
81 |
+
logging.info(f"This is the text being analysed: {st.session_state.text}")
|
82 |
+
st.session_state.text_error = ""
|
83 |
+
st.session_state.n_requests += 1
|
84 |
analyze_results = analyze(
|
85 |
+
text=st.session_state.text,
|
86 |
entities=st_entities,
|
87 |
language="en",
|
88 |
return_decision_process=False,
|
89 |
)
|
90 |
+
|
91 |
+
# if st.session_state.metadata:
|
92 |
+
# analyze_results = include_manual_input(analyze_results)
|
93 |
+
|
94 |
+
if st.session_state.allowed_words:
|
95 |
+
analyze_results = exclude_manual_input(analyze_results)
|
96 |
+
|
97 |
+
st.session_state.analyze_results = analyze_results
|
98 |
|
|
|
99 |
logging.info(
|
100 |
+
f"analyse results: {st.session_state.analyze_results}\n"
|
101 |
+
)
|
102 |
+
|
103 |
+
|
104 |
+
# def include_manual_input(analyze_results):
|
105 |
+
# analyze_results_extended=[]
|
106 |
+
# logging.info(
|
107 |
+
# f"analyse results before adding extra words: {analyze_results}\n"
|
108 |
+
# )
|
109 |
+
# for word in st.session_state.text.split():
|
110 |
+
# if word in st.session_state.metadata:
|
111 |
+
# [m.start() for m in re.finditer('test', 'test test test test')]
|
112 |
+
# analyze_results_extended.append("type: MANUAL, start: 0, end: 3, score: 1.0")
|
113 |
+
# logging.info(
|
114 |
+
# f"analyse results after adding allowed words: {analyze_results_extended}\n"
|
115 |
+
# )
|
116 |
+
# return analyze_results
|
117 |
+
|
118 |
+
def exclude_manual_input(analyze_results):
|
119 |
+
analyze_results_fltered=[]
|
120 |
+
logging.info(
|
121 |
+
f"analyse results before removing allowed words: {analyze_results}\n"
|
122 |
)
|
123 |
+
for token in analyze_results:
|
124 |
+
if st.session_state.text[token.start:token.end] not in st.session_state.allowed_words:
|
125 |
+
analyze_results_fltered.append(token)
|
126 |
+
logging.info(
|
127 |
+
f"analyse results after removing allowed words: {analyze_results_fltered}\n"
|
128 |
+
)
|
129 |
+
return analyze_results_fltered
|
130 |
+
|
131 |
+
|
132 |
+
@st.cache(allow_output_mutation=True)
|
133 |
+
def anonymizer_engine():
|
134 |
+
"""Return AnonymizerEngine."""
|
135 |
+
return AnonymizerEngine()
|
136 |
|
137 |
+
def anonymise_text():
|
|
|
138 |
if st.session_state.n_requests >= 50:
|
139 |
st.session_state.text_error = "Too many requests. Please wait a few seconds before anonymising more text."
|
140 |
logging.info(f"Session request limit reached: {st.session_state.n_requests}")
|
141 |
st.session_state.n_requests = 1
|
|
|
142 |
|
|
|
143 |
st.session_state.text_error = ""
|
144 |
|
145 |
+
if not st.session_state.text:
|
146 |
st.session_state.text_error = "Please enter your text"
|
147 |
return
|
148 |
+
|
149 |
+
if not st.session_state.analyze_results:
|
150 |
+
analyze_text()
|
151 |
+
|
152 |
with text_spinner_placeholder:
|
153 |
with st.spinner("Please wait while your text is being anonymised..."):
|
154 |
+
anon_results = anonymizer_engine().anonymize(st.session_state.text, st.session_state.analyze_results)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
st.session_state.text_error = ""
|
156 |
st.session_state.n_requests += 1
|
157 |
+
st.session_state.anon_results = anon_results
|
158 |
logging.info(
|
159 |
+
f"text anonymised: {st.session_state.anon_results}"
|
|
|
|
|
160 |
)
|
161 |
|
162 |
+
def clear_results():
|
163 |
+
st.session_state.anon_results=""
|
164 |
+
st.session_state.analyze_results=""
|
165 |
+
|
166 |
+
##############################
|
167 |
+
#### Initialize variables ####
|
168 |
+
##############################
|
169 |
+
|
170 |
if "text_error" not in st.session_state:
|
171 |
st.session_state.text_error = ""
|
172 |
+
if "analyze_results" not in st.session_state:
|
173 |
+
st.session_state.analyze_results = ""
|
174 |
+
if "anon_results" not in st.session_state:
|
175 |
+
st.session_state.anon_results = ""
|
176 |
if "n_requests" not in st.session_state:
|
177 |
st.session_state.n_requests = 0
|
178 |
|
179 |
+
##############################
|
180 |
+
####### Page arguments #######
|
181 |
+
##############################
|
182 |
+
|
183 |
+
# Every widget with a key is automatically added to Session State
|
184 |
+
|
185 |
+
# In Streamlit, interacting with a widget triggers a rerun and variables defined
|
186 |
+
# in the code get reinitialized after each rerun.
|
187 |
+
|
188 |
+
# If a callback function is associated with a widget then a change in the widget
|
189 |
+
# triggers the following sequence: First the callback function is executed and then
|
190 |
+
# the app executes from top to bottom.
|
191 |
+
|
192 |
+
st.text_input(
|
193 |
+
label="Text",
|
194 |
+
placeholder="Write your text here",
|
195 |
+
key='text',
|
196 |
+
on_change=clear_results
|
197 |
+
)
|
198 |
+
st.text_input(
|
199 |
label="Data to be redacted (optional)",
|
200 |
+
placeholder="John, Mary, London",
|
201 |
+
key='metadata',
|
202 |
+
on_change=clear_results
|
203 |
)
|
204 |
+
st.text_input(
|
205 |
label="Data to be ignored (optional)",
|
206 |
+
placeholder="NHS, GEL, Lab",
|
207 |
+
key='allowed_words',
|
208 |
+
on_change=clear_results
|
209 |
)
|
210 |
|
211 |
+
st_entities = st.sidebar.multiselect(
|
212 |
+
label="Which entities to look for?",
|
213 |
+
options=get_supported_entities(),
|
214 |
+
default=list(get_supported_entities()),
|
|
|
|
|
215 |
)
|
216 |
+
|
217 |
+
##############################
|
218 |
+
######## Page buttons ########
|
219 |
+
##############################
|
220 |
+
|
221 |
# button return true when clicked
|
222 |
+
|
223 |
+
col1, col2 = st.columns(2)
|
224 |
+
|
225 |
+
with col1:
|
226 |
+
analyze_now = st.button(
|
227 |
+
label="Analyse text",
|
228 |
+
type="primary",
|
229 |
+
on_click=analyze_text,
|
230 |
+
)
|
231 |
+
|
232 |
+
with col2:
|
233 |
+
anonymise_now = st.button(
|
234 |
+
label="Anonymise text",
|
235 |
+
type="primary",
|
236 |
+
on_click=anonymise_text,
|
237 |
+
)
|
238 |
+
|
239 |
+
##############################
|
240 |
+
######## Page actions ########
|
241 |
+
##############################
|
242 |
+
|
243 |
text_spinner_placeholder = st.empty()
|
244 |
if st.session_state.text_error:
|
245 |
st.error(st.session_state.text_error)
|
246 |
+
|
247 |
+
with col1:
|
248 |
+
if st.session_state.analyze_results:
|
249 |
+
annotated_tokens=annotate()
|
250 |
+
annotated_text(*annotated_tokens)
|
251 |
+
st.write(st.session_state.analyze_results)
|
252 |
+
with col2:
|
253 |
+
if st.session_state.anon_results:
|
254 |
+
st.write(st.session_state.anon_results.text)
|