Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,12 +1,23 @@
|
|
1 |
import gradio as gr
|
2 |
-
from PIL import Image, ImageDraw
|
3 |
import requests
|
4 |
from io import BytesIO
|
5 |
-
import
|
|
|
|
|
6 |
|
7 |
# AI model repo for design generation
|
8 |
repo = "artificialguybr/TshirtDesignRedmond-V2"
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
# Generate plain cloth image with specified color
|
11 |
def generate_cloth(color_prompt):
|
12 |
prompt = f"A plain {color_prompt} colored T-shirt hanging on a plain wall."
|
@@ -41,49 +52,44 @@ def generate_design(design_prompt):
|
|
41 |
else:
|
42 |
raise Exception(f"Error generating design: {response.status_code}")
|
43 |
|
44 |
-
#
|
45 |
-
def
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
# Overlay the design at specified coordinates
|
54 |
-
result = cloth_image.copy()
|
55 |
-
result.paste(resized_design, (x, y), resized_design)
|
56 |
|
57 |
-
|
|
|
|
|
|
|
58 |
|
59 |
# Full workflow: Generate cloth, design, and combine them
|
60 |
-
def design_tshirt(color_prompt, design_prompt
|
61 |
cloth_image = generate_cloth(color_prompt)
|
62 |
design_image = generate_design(design_prompt)
|
63 |
-
final_image =
|
64 |
return final_image
|
65 |
|
66 |
# Gradio interface
|
67 |
with gr.Blocks() as interface:
|
68 |
gr.Markdown("# **AI Cloth Designer**")
|
69 |
-
gr.Markdown("Generate custom T-shirts by specifying a color and adding a
|
70 |
|
71 |
with gr.Row():
|
72 |
with gr.Column(scale=1):
|
73 |
color_prompt = gr.Textbox(label="Cloth Color", placeholder="E.g., Red, Blue")
|
74 |
design_prompt = gr.Textbox(label="Design Details", placeholder="E.g., Abstract art, Nature patterns")
|
75 |
-
x_coord = gr.Slider(label="X Coordinate", minimum=0, maximum=400, step=10, value=100)
|
76 |
-
y_coord = gr.Slider(label="Y Coordinate", minimum=0, maximum=600, step=10, value=100)
|
77 |
-
width_slider = gr.Slider(label="Design Width", minimum=100, maximum=500, step=10, value=200)
|
78 |
-
height_slider = gr.Slider(label="Design Height", minimum=100, maximum=500, step=10, value=300)
|
79 |
generate_button = gr.Button("Generate T-Shirt")
|
80 |
with gr.Column(scale=1):
|
81 |
output_image = gr.Image(label="Final T-Shirt Design")
|
82 |
|
83 |
generate_button.click(
|
84 |
design_tshirt,
|
85 |
-
inputs=[color_prompt, design_prompt
|
86 |
outputs=output_image,
|
87 |
)
|
88 |
|
89 |
-
interface.launch(debug=True)
|
|
|
1 |
import gradio as gr
|
2 |
+
from PIL import Image, ImageDraw, ImageOps
|
3 |
import requests
|
4 |
from io import BytesIO
|
5 |
+
import torch
|
6 |
+
from torchvision import transforms
|
7 |
+
from torchvision.models.segmentation import deeplabv3_resnet101
|
8 |
|
9 |
# AI model repo for design generation
|
10 |
repo = "artificialguybr/TshirtDesignRedmond-V2"
|
11 |
|
12 |
+
# Load a pretrained segmentation model for masking
|
13 |
+
segmentation_model = deeplabv3_resnet101(pretrained=True).eval()
|
14 |
+
|
15 |
+
# Transform for input image
|
16 |
+
transform = transforms.Compose([
|
17 |
+
transforms.Resize((512, 512)),
|
18 |
+
transforms.ToTensor(),
|
19 |
+
])
|
20 |
+
|
21 |
# Generate plain cloth image with specified color
|
22 |
def generate_cloth(color_prompt):
|
23 |
prompt = f"A plain {color_prompt} colored T-shirt hanging on a plain wall."
|
|
|
52 |
else:
|
53 |
raise Exception(f"Error generating design: {response.status_code}")
|
54 |
|
55 |
+
# Apply segmentation mask to fit design on T-shirt
|
56 |
+
def apply_mask(cloth_image, design_image):
|
57 |
+
input_tensor = transform(cloth_image).unsqueeze(0)
|
58 |
+
with torch.no_grad():
|
59 |
+
output = segmentation_model(input_tensor)['out'][0]
|
60 |
+
mask = output.argmax(0).byte().numpy()
|
61 |
+
mask_image = Image.fromarray((mask == 15).astype('uint8') * 255) # Class 15 for T-shirt
|
62 |
+
mask_resized = mask_image.resize(cloth_image.size)
|
|
|
|
|
|
|
|
|
63 |
|
64 |
+
# Fit the design inside the T-shirt mask
|
65 |
+
design_resized = design_image.resize(cloth_image.size)
|
66 |
+
design_masked = Image.composite(design_resized, cloth_image, mask_resized)
|
67 |
+
return design_masked
|
68 |
|
69 |
# Full workflow: Generate cloth, design, and combine them
|
70 |
+
def design_tshirt(color_prompt, design_prompt):
|
71 |
cloth_image = generate_cloth(color_prompt)
|
72 |
design_image = generate_design(design_prompt)
|
73 |
+
final_image = apply_mask(cloth_image, design_image)
|
74 |
return final_image
|
75 |
|
76 |
# Gradio interface
|
77 |
with gr.Blocks() as interface:
|
78 |
gr.Markdown("# **AI Cloth Designer**")
|
79 |
+
gr.Markdown("Generate custom T-shirts by specifying a color and adding a perfectly fitted design.")
|
80 |
|
81 |
with gr.Row():
|
82 |
with gr.Column(scale=1):
|
83 |
color_prompt = gr.Textbox(label="Cloth Color", placeholder="E.g., Red, Blue")
|
84 |
design_prompt = gr.Textbox(label="Design Details", placeholder="E.g., Abstract art, Nature patterns")
|
|
|
|
|
|
|
|
|
85 |
generate_button = gr.Button("Generate T-Shirt")
|
86 |
with gr.Column(scale=1):
|
87 |
output_image = gr.Image(label="Final T-Shirt Design")
|
88 |
|
89 |
generate_button.click(
|
90 |
design_tshirt,
|
91 |
+
inputs=[color_prompt, design_prompt],
|
92 |
outputs=output_image,
|
93 |
)
|
94 |
|
95 |
+
interface.launch(debug=True)
|