Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,70 +1,78 @@
|
|
1 |
import gradio as gr
|
2 |
-
from PIL import Image
|
3 |
import requests
|
4 |
from io import BytesIO
|
5 |
-
import
|
6 |
-
import cv2
|
7 |
|
8 |
# AI model repo for design generation
|
9 |
repo = "artificialguybr/TshirtDesignRedmond-V2"
|
10 |
|
|
|
11 |
def generate_cloth(color_prompt):
|
12 |
prompt = f"A plain {color_prompt} colored T-shirt hanging on a plain wall."
|
13 |
api_url = f"https://api-inference.huggingface.co/models/{repo}"
|
14 |
headers = {}
|
15 |
-
payload = {
|
|
|
|
|
|
|
|
|
|
|
16 |
response = requests.post(api_url, headers=headers, json=payload)
|
17 |
if response.status_code == 200:
|
18 |
-
return Image.open(BytesIO(response.content))
|
19 |
else:
|
20 |
raise Exception(f"Error generating cloth: {response.status_code}")
|
21 |
|
|
|
22 |
def generate_design(design_prompt):
|
23 |
prompt = f"A bold {design_prompt} design with vibrant colors, highly detailed."
|
24 |
api_url = f"https://api-inference.huggingface.co/models/{repo}"
|
25 |
headers = {}
|
26 |
-
payload = {
|
|
|
|
|
|
|
|
|
|
|
27 |
response = requests.post(api_url, headers=headers, json=payload)
|
28 |
if response.status_code == 200:
|
29 |
-
return Image.open(BytesIO(response.content))
|
30 |
else:
|
31 |
raise Exception(f"Error generating design: {response.status_code}")
|
32 |
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
design_rgb = design_np[:, :, :3]
|
39 |
-
else:
|
40 |
-
alpha_channel = np.ones((design_np.shape[0], design_np.shape[1]))
|
41 |
-
design_rgb = design_np
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
matrix = cv2.getPerspectiveTransform(src_points, dest_points)
|
46 |
-
warped_design = cv2.warpPerspective(design_rgb, matrix, (cloth_np.shape[1], cloth_np.shape[0]))
|
47 |
-
warped_alpha = cv2.warpPerspective(alpha_channel, matrix, (cloth_np.shape[1], cloth_np.shape[0]))
|
48 |
|
49 |
-
|
50 |
-
|
|
|
51 |
|
52 |
-
return
|
53 |
|
|
|
54 |
def design_tshirt(color_prompt, design_prompt, x, y, width, height):
|
55 |
cloth_image = generate_cloth(color_prompt)
|
56 |
design_image = generate_design(design_prompt)
|
57 |
-
|
58 |
-
final_image = warp_design_to_tshirt(cloth_image, design_image, points)
|
59 |
return final_image
|
60 |
|
|
|
61 |
with gr.Blocks() as interface:
|
62 |
gr.Markdown("# **AI Cloth Designer**")
|
|
|
|
|
63 |
with gr.Row():
|
64 |
with gr.Column(scale=1):
|
65 |
color_prompt = gr.Textbox(label="Cloth Color", placeholder="E.g., Red, Blue")
|
66 |
design_prompt = gr.Textbox(label="Design Details", placeholder="E.g., Abstract art, Nature patterns")
|
67 |
-
x_coord = gr.Slider(label="X Coordinate", minimum=0, maximum=
|
68 |
y_coord = gr.Slider(label="Y Coordinate", minimum=0, maximum=600, step=10, value=100)
|
69 |
width_slider = gr.Slider(label="Design Width", minimum=100, maximum=500, step=10, value=200)
|
70 |
height_slider = gr.Slider(label="Design Height", minimum=100, maximum=500, step=10, value=300)
|
@@ -78,4 +86,4 @@ with gr.Blocks() as interface:
|
|
78 |
outputs=output_image,
|
79 |
)
|
80 |
|
81 |
-
interface.launch(debug=True)
|
|
|
1 |
import gradio as gr
|
2 |
+
from PIL import Image, ImageDraw
|
3 |
import requests
|
4 |
from io import BytesIO
|
5 |
+
import os
|
|
|
6 |
|
7 |
# AI model repo for design generation
|
8 |
repo = "artificialguybr/TshirtDesignRedmond-V2"
|
9 |
|
10 |
+
# Generate plain cloth image with specified color
|
11 |
def generate_cloth(color_prompt):
|
12 |
prompt = f"A plain {color_prompt} colored T-shirt hanging on a plain wall."
|
13 |
api_url = f"https://api-inference.huggingface.co/models/{repo}"
|
14 |
headers = {}
|
15 |
+
payload = {
|
16 |
+
"inputs": prompt,
|
17 |
+
"parameters": {
|
18 |
+
"num_inference_steps": 30,
|
19 |
+
},
|
20 |
+
}
|
21 |
response = requests.post(api_url, headers=headers, json=payload)
|
22 |
if response.status_code == 200:
|
23 |
+
return Image.open(BytesIO(response.content))
|
24 |
else:
|
25 |
raise Exception(f"Error generating cloth: {response.status_code}")
|
26 |
|
27 |
+
# Generate design based on user prompt
|
28 |
def generate_design(design_prompt):
|
29 |
prompt = f"A bold {design_prompt} design with vibrant colors, highly detailed."
|
30 |
api_url = f"https://api-inference.huggingface.co/models/{repo}"
|
31 |
headers = {}
|
32 |
+
payload = {
|
33 |
+
"inputs": prompt,
|
34 |
+
"parameters": {
|
35 |
+
"num_inference_steps": 30,
|
36 |
+
},
|
37 |
+
}
|
38 |
response = requests.post(api_url, headers=headers, json=payload)
|
39 |
if response.status_code == 200:
|
40 |
+
return Image.open(BytesIO(response.content))
|
41 |
else:
|
42 |
raise Exception(f"Error generating design: {response.status_code}")
|
43 |
|
44 |
+
# Overlay design on cloth with adjustable width and height
|
45 |
+
def overlay_design(cloth_image, design_image, x, y, width, height):
|
46 |
+
# Ensure images are in RGBA mode
|
47 |
+
cloth_image = cloth_image.convert("RGBA")
|
48 |
+
design_image = design_image.convert("RGBA")
|
|
|
|
|
|
|
|
|
49 |
|
50 |
+
# Resize design based on user inputs
|
51 |
+
resized_design = design_image.resize((width, height))
|
|
|
|
|
|
|
52 |
|
53 |
+
# Overlay the design at specified coordinates
|
54 |
+
result = cloth_image.copy()
|
55 |
+
result.paste(resized_design, (x, y), resized_design)
|
56 |
|
57 |
+
return result
|
58 |
|
59 |
+
# Full workflow: Generate cloth, design, and combine them
|
60 |
def design_tshirt(color_prompt, design_prompt, x, y, width, height):
|
61 |
cloth_image = generate_cloth(color_prompt)
|
62 |
design_image = generate_design(design_prompt)
|
63 |
+
final_image = overlay_design(cloth_image, design_image, x, y, width, height)
|
|
|
64 |
return final_image
|
65 |
|
66 |
+
# Gradio interface
|
67 |
with gr.Blocks() as interface:
|
68 |
gr.Markdown("# **AI Cloth Designer**")
|
69 |
+
gr.Markdown("Generate custom T-shirts by specifying a color and adding a draggable design with adjustable size.")
|
70 |
+
|
71 |
with gr.Row():
|
72 |
with gr.Column(scale=1):
|
73 |
color_prompt = gr.Textbox(label="Cloth Color", placeholder="E.g., Red, Blue")
|
74 |
design_prompt = gr.Textbox(label="Design Details", placeholder="E.g., Abstract art, Nature patterns")
|
75 |
+
x_coord = gr.Slider(label="X Coordinate", minimum=0, maximum=400, step=10, value=100)
|
76 |
y_coord = gr.Slider(label="Y Coordinate", minimum=0, maximum=600, step=10, value=100)
|
77 |
width_slider = gr.Slider(label="Design Width", minimum=100, maximum=500, step=10, value=200)
|
78 |
height_slider = gr.Slider(label="Design Height", minimum=100, maximum=500, step=10, value=300)
|
|
|
86 |
outputs=output_image,
|
87 |
)
|
88 |
|
89 |
+
interface.launch(debug=True)
|