vlmqa / app.py
gabrielaltay's picture
take care of bfloat16 conversions
794de9b
raw
history blame
9.68 kB
import hmac
import os
import tempfile
from colpali_engine.models.paligemma_colbert_architecture import ColPali
from colpali_engine.utils.colpali_processing_utils import process_images
from colpali_engine.utils.colpali_processing_utils import process_queries
import google.generativeai as genai
import numpy as np
import pdf2image
from PIL import Image
import requests
import streamlit as st
import torch
from torch.utils.data import DataLoader
from transformers import AutoProcessor
def check_password():
"""Returns `True` if the user had the correct password."""
def password_entered():
"""Checks whether a password entered by the user is correct."""
if hmac.compare_digest(st.session_state["password"], st.secrets["password"]):
st.session_state["password_correct"] = True
del st.session_state["password"] # Don't store the password.
else:
st.session_state["password_correct"] = False
# Return True if the password is validated.
if st.session_state.get("password_correct", False):
return True
# Show input for password.
st.text_input(
"Password", type="password", on_change=password_entered, key="password"
)
if "password_correct" in st.session_state:
st.error("😕 Password incorrect")
return False
if not check_password():
st.stop() # Do not continue if check_password is not True.
os.environ["TOKENIZERS_PARALLELISM"] = "false"
SS = st.session_state
def initialize_session_state():
keys = [
"colpali_model",
"page_images",
"page_embeddings",
"retrieved_page_images",
"retrieved_page_scores",
"response",
]
for key in keys:
if key not in SS:
SS[key] = None
def get_device():
if torch.cuda.is_available():
device = torch.device("cuda")
elif torch.backends.mps.is_available():
device = torch.device("mps")
else:
device = torch.device("cpu")
return device
def get_dtype(device: torch.device):
if device == torch.device("cuda"):
if torch.cuda.is_bf16_supported():
dtype = torch.bfloat16
else:
dtype = torch.float16
elif device == torch.device("mps"):
dtype = torch.float32
else:
dtype = torch.float32
return dtype
def load_colpali_model():
paligemma_model_name = "google/paligemma-3b-mix-448"
colpali_model_name = "vidore/colpali"
device = get_device()
dtype = get_dtype(device)
model = ColPali.from_pretrained(
paligemma_model_name,
torch_dtype=dtype,
token=st.secrets["hf_access_token"],
).eval()
model.load_adapter(colpali_model_name)
model.to(device)
processor = AutoProcessor.from_pretrained(colpali_model_name)
return model, processor
def embed_page_images(model, processor, page_images, batch_size=1):
dataloader = DataLoader(
page_images,
batch_size=batch_size,
shuffle=False,
collate_fn=lambda x: process_images(processor, x),
)
page_embeddings = []
pbar = st.progress(0, text="embedding pages")
for ibatch, batch in enumerate(dataloader):
with torch.no_grad():
batch = {k: v.to(model.device) for k, v in batch.items()}
embeddings = model(**batch)
page_embeddings.extend(list(torch.unbind(embeddings.to("cpu"))))
pbar.progress((ibatch + 1) / len(page_images), text="embedding pages")
return np.array([el.to(torch.float32) for el in page_embeddings])
def embed_query_texts(model, processor, query_texts, batch_size=1):
# 448 is from the paligemma resolution we loaded
dummy_image = Image.new("RGB", (448, 448), (255, 255, 255))
dataloader = DataLoader(
query_texts,
batch_size=batch_size,
shuffle=False,
collate_fn=lambda x: process_queries(processor, x, dummy_image),
)
query_embeddings = []
for batch in dataloader:
with torch.no_grad():
batch = {k: v.to(model.device) for k, v in batch.items()}
embeddings = model(**batch)
query_embeddings.extend(list(torch.unbind(embeddings.to("cpu"))))
return np.array([el.to(torch.float32) for el in query_embeddings])[0]
def get_pdf_page_images_from_bytes(
pdf_bytes: bytes,
use_tmp_dir=False,
):
if use_tmp_dir:
with tempfile.TemporaryDirectory() as tmp_path:
page_images = pdf2image.convert_from_bytes(
pdf_bytes, output_folder=tmp_path
)
else:
page_images = pdf2image.convert_from_bytes(pdf_bytes)
return page_images
def get_pdf_bytes_from_url(url: str) -> bytes | None:
response = requests.get(url)
if response.status_code == 200:
return response.content
else:
print(f"failed to fetch {url}")
print(response)
return None
def display_pages(page_images, key, captions=None):
n_cols = st.slider("ncol", min_value=1, max_value=8, value=4, step=1, key=key)
cols = st.columns(n_cols)
for ii_page, page_image in enumerate(page_images):
ii_col = ii_page % n_cols
with cols[ii_col]:
if captions is not None:
caption = captions[ii_page]
else:
caption = None
st.image(page_image, caption=caption)
initialize_session_state()
if SS["colpali_model"] is None:
SS["colpali_model"], SS["processor"] = load_colpali_model()
with st.sidebar:
with st.container(border=True):
st.header("Load PDF (URL or Upload)")
st.write("When a PDF is loaded, each page will be turned into an image.")
url = st.text_input("Provide a URL", "https://arxiv.org/pdf/2404.15549v2")
if st.button("load paper from url"):
pdf_bytes = get_pdf_bytes_from_url(url)
SS["page_images"] = get_pdf_page_images_from_bytes(pdf_bytes)
uploaded_file = st.file_uploader("Upload a file", type=["pdf"])
if uploaded_file is not None:
pdf_bytes = uploaded_file.getvalue()
SS["page_images"] = get_pdf_page_images_from_bytes(pdf_bytes)
with st.container(border=True):
st.header("Embed Page Images")
st.write(
"In order to retrieve relevant images for a query, we must first embed the images."
)
if st.button("embed pages"):
SS["page_embeddings"] = embed_page_images(
SS["colpali_model"],
SS["processor"],
SS["page_images"],
)
if SS["page_images"] is not None:
st.write("Num Page Images: {}".format(len(SS["page_images"])))
if SS["page_embeddings"] is not None:
st.write("Page Embeddings Shape: {}".format(SS["page_embeddings"].shape))
with st.container(border=True):
query = st.text_area("query")
prompt_template_default = """Your goal is to answer queries based on the provided images. Each image is one page from a single PDF document. Provide answers that are at least 3 sentences long. Clearly explain the reasoning behind your answer. Create trustworthy answers by referencing the material in the PDF pages. Do not reference page numbers unless they appear on the page images.
---
{query}"""
with st.expander("Prompt Template"):
prompt_template = st.text_area(
"Customize the prompt template",
prompt_template_default,
height=200,
)
top_k = st.slider(
"num pages to retrieve", min_value=1, max_value=8, value=3, step=1
)
if st.button("answer query"):
SS["query_embeddings"] = embed_query_texts(
SS["colpali_model"],
SS["processor"],
[query],
)
page_query_scores = []
for ipage in range(len(SS["page_embeddings"])):
# for every query token find the max_sim with every page patch
patch_query_scores = np.dot(
SS["page_embeddings"][ipage],
SS["query_embeddings"].T,
)
max_sim_score = patch_query_scores.max(axis=0).sum()
page_query_scores.append(max_sim_score)
page_query_scores = np.array(page_query_scores)
i_ranked_pages = np.argsort(-page_query_scores)
page_images = []
page_scores = []
num_pages = len(SS["page_images"])
for ii in range(min(top_k, num_pages)):
page_images.append(SS["page_images"][i_ranked_pages[ii]])
page_scores.append(page_query_scores[i_ranked_pages[ii]])
SS["retrieved_page_images"] = page_images
SS["retrieved_page_scores"] = page_scores
prompt = [prompt_template.format(query=query)] + page_images
genai.configure(api_key=st.secrets["google_genai_api_key"])
# genai_model_name = "gemini-1.5-flash"
genai_model_name = "gemini-1.5-pro"
gen_model = genai.GenerativeModel(
model_name=genai_model_name,
generation_config=genai.GenerationConfig(
temperature=0.0,
),
)
response = gen_model.generate_content(prompt)
text = response.candidates[0].content.parts[0].text
SS["response"] = text
if SS["response"] is not None:
st.header("Response")
st.write(SS["response"])
st.header("Retrieved Pages")
display_pages(
SS["retrieved_page_images"],
"retrieved_pages",
captions=[f"Score={el:.2f}" for el in SS["retrieved_page_scores"]],
)
if SS["page_images"] is not None:
st.header("All Pages")
display_pages(SS["page_images"], "all_pages")