Spaces:
Sleeping
Sleeping
File size: 9,676 Bytes
f693380 e3a3f96 f40eab1 f693380 e3a3f96 f40eab1 bcf0900 f40eab1 0b63397 f40eab1 794de9b f40eab1 e3a3f96 f40eab1 bcf0900 f40eab1 bcf0900 f40eab1 bcf0900 794de9b f40eab1 794de9b f40eab1 bcf0900 f40eab1 bcf0900 f40eab1 bcf0900 f40eab1 bcf0900 f40eab1 bcf0900 f40eab1 bcf0900 f40eab1 bcf0900 f40eab1 bcf0900 f40eab1 bcf0900 f40eab1 bcf0900 f40eab1 bcf0900 f40eab1 bcf0900 f40eab1 bcf0900 f40eab1 bcf0900 e3a3f96 bcf0900 e3a3f96 f40eab1 bcf0900 f40eab1 bcf0900 f40eab1 bcf0900 f40eab1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 |
import hmac
import os
import tempfile
from colpali_engine.models.paligemma_colbert_architecture import ColPali
from colpali_engine.utils.colpali_processing_utils import process_images
from colpali_engine.utils.colpali_processing_utils import process_queries
import google.generativeai as genai
import numpy as np
import pdf2image
from PIL import Image
import requests
import streamlit as st
import torch
from torch.utils.data import DataLoader
from transformers import AutoProcessor
def check_password():
"""Returns `True` if the user had the correct password."""
def password_entered():
"""Checks whether a password entered by the user is correct."""
if hmac.compare_digest(st.session_state["password"], st.secrets["password"]):
st.session_state["password_correct"] = True
del st.session_state["password"] # Don't store the password.
else:
st.session_state["password_correct"] = False
# Return True if the password is validated.
if st.session_state.get("password_correct", False):
return True
# Show input for password.
st.text_input(
"Password", type="password", on_change=password_entered, key="password"
)
if "password_correct" in st.session_state:
st.error("😕 Password incorrect")
return False
if not check_password():
st.stop() # Do not continue if check_password is not True.
os.environ["TOKENIZERS_PARALLELISM"] = "false"
SS = st.session_state
def initialize_session_state():
keys = [
"colpali_model",
"page_images",
"page_embeddings",
"retrieved_page_images",
"retrieved_page_scores",
"response",
]
for key in keys:
if key not in SS:
SS[key] = None
def get_device():
if torch.cuda.is_available():
device = torch.device("cuda")
elif torch.backends.mps.is_available():
device = torch.device("mps")
else:
device = torch.device("cpu")
return device
def get_dtype(device: torch.device):
if device == torch.device("cuda"):
if torch.cuda.is_bf16_supported():
dtype = torch.bfloat16
else:
dtype = torch.float16
elif device == torch.device("mps"):
dtype = torch.float32
else:
dtype = torch.float32
return dtype
def load_colpali_model():
paligemma_model_name = "google/paligemma-3b-mix-448"
colpali_model_name = "vidore/colpali"
device = get_device()
dtype = get_dtype(device)
model = ColPali.from_pretrained(
paligemma_model_name,
torch_dtype=dtype,
token=st.secrets["hf_access_token"],
).eval()
model.load_adapter(colpali_model_name)
model.to(device)
processor = AutoProcessor.from_pretrained(colpali_model_name)
return model, processor
def embed_page_images(model, processor, page_images, batch_size=1):
dataloader = DataLoader(
page_images,
batch_size=batch_size,
shuffle=False,
collate_fn=lambda x: process_images(processor, x),
)
page_embeddings = []
pbar = st.progress(0, text="embedding pages")
for ibatch, batch in enumerate(dataloader):
with torch.no_grad():
batch = {k: v.to(model.device) for k, v in batch.items()}
embeddings = model(**batch)
page_embeddings.extend(list(torch.unbind(embeddings.to("cpu"))))
pbar.progress((ibatch + 1) / len(page_images), text="embedding pages")
return np.array([el.to(torch.float32) for el in page_embeddings])
def embed_query_texts(model, processor, query_texts, batch_size=1):
# 448 is from the paligemma resolution we loaded
dummy_image = Image.new("RGB", (448, 448), (255, 255, 255))
dataloader = DataLoader(
query_texts,
batch_size=batch_size,
shuffle=False,
collate_fn=lambda x: process_queries(processor, x, dummy_image),
)
query_embeddings = []
for batch in dataloader:
with torch.no_grad():
batch = {k: v.to(model.device) for k, v in batch.items()}
embeddings = model(**batch)
query_embeddings.extend(list(torch.unbind(embeddings.to("cpu"))))
return np.array([el.to(torch.float32) for el in query_embeddings])[0]
def get_pdf_page_images_from_bytes(
pdf_bytes: bytes,
use_tmp_dir=False,
):
if use_tmp_dir:
with tempfile.TemporaryDirectory() as tmp_path:
page_images = pdf2image.convert_from_bytes(
pdf_bytes, output_folder=tmp_path
)
else:
page_images = pdf2image.convert_from_bytes(pdf_bytes)
return page_images
def get_pdf_bytes_from_url(url: str) -> bytes | None:
response = requests.get(url)
if response.status_code == 200:
return response.content
else:
print(f"failed to fetch {url}")
print(response)
return None
def display_pages(page_images, key, captions=None):
n_cols = st.slider("ncol", min_value=1, max_value=8, value=4, step=1, key=key)
cols = st.columns(n_cols)
for ii_page, page_image in enumerate(page_images):
ii_col = ii_page % n_cols
with cols[ii_col]:
if captions is not None:
caption = captions[ii_page]
else:
caption = None
st.image(page_image, caption=caption)
initialize_session_state()
if SS["colpali_model"] is None:
SS["colpali_model"], SS["processor"] = load_colpali_model()
with st.sidebar:
with st.container(border=True):
st.header("Load PDF (URL or Upload)")
st.write("When a PDF is loaded, each page will be turned into an image.")
url = st.text_input("Provide a URL", "https://arxiv.org/pdf/2404.15549v2")
if st.button("load paper from url"):
pdf_bytes = get_pdf_bytes_from_url(url)
SS["page_images"] = get_pdf_page_images_from_bytes(pdf_bytes)
uploaded_file = st.file_uploader("Upload a file", type=["pdf"])
if uploaded_file is not None:
pdf_bytes = uploaded_file.getvalue()
SS["page_images"] = get_pdf_page_images_from_bytes(pdf_bytes)
with st.container(border=True):
st.header("Embed Page Images")
st.write(
"In order to retrieve relevant images for a query, we must first embed the images."
)
if st.button("embed pages"):
SS["page_embeddings"] = embed_page_images(
SS["colpali_model"],
SS["processor"],
SS["page_images"],
)
if SS["page_images"] is not None:
st.write("Num Page Images: {}".format(len(SS["page_images"])))
if SS["page_embeddings"] is not None:
st.write("Page Embeddings Shape: {}".format(SS["page_embeddings"].shape))
with st.container(border=True):
query = st.text_area("query")
prompt_template_default = """Your goal is to answer queries based on the provided images. Each image is one page from a single PDF document. Provide answers that are at least 3 sentences long. Clearly explain the reasoning behind your answer. Create trustworthy answers by referencing the material in the PDF pages. Do not reference page numbers unless they appear on the page images.
---
{query}"""
with st.expander("Prompt Template"):
prompt_template = st.text_area(
"Customize the prompt template",
prompt_template_default,
height=200,
)
top_k = st.slider(
"num pages to retrieve", min_value=1, max_value=8, value=3, step=1
)
if st.button("answer query"):
SS["query_embeddings"] = embed_query_texts(
SS["colpali_model"],
SS["processor"],
[query],
)
page_query_scores = []
for ipage in range(len(SS["page_embeddings"])):
# for every query token find the max_sim with every page patch
patch_query_scores = np.dot(
SS["page_embeddings"][ipage],
SS["query_embeddings"].T,
)
max_sim_score = patch_query_scores.max(axis=0).sum()
page_query_scores.append(max_sim_score)
page_query_scores = np.array(page_query_scores)
i_ranked_pages = np.argsort(-page_query_scores)
page_images = []
page_scores = []
num_pages = len(SS["page_images"])
for ii in range(min(top_k, num_pages)):
page_images.append(SS["page_images"][i_ranked_pages[ii]])
page_scores.append(page_query_scores[i_ranked_pages[ii]])
SS["retrieved_page_images"] = page_images
SS["retrieved_page_scores"] = page_scores
prompt = [prompt_template.format(query=query)] + page_images
genai.configure(api_key=st.secrets["google_genai_api_key"])
# genai_model_name = "gemini-1.5-flash"
genai_model_name = "gemini-1.5-pro"
gen_model = genai.GenerativeModel(
model_name=genai_model_name,
generation_config=genai.GenerationConfig(
temperature=0.0,
),
)
response = gen_model.generate_content(prompt)
text = response.candidates[0].content.parts[0].text
SS["response"] = text
if SS["response"] is not None:
st.header("Response")
st.write(SS["response"])
st.header("Retrieved Pages")
display_pages(
SS["retrieved_page_images"],
"retrieved_pages",
captions=[f"Score={el:.2f}" for el in SS["retrieved_page_scores"]],
)
if SS["page_images"] is not None:
st.header("All Pages")
display_pages(SS["page_images"], "all_pages")
|