Spaces:
Running
Running
gabrielaltay
commited on
Commit
•
f40eab1
1
Parent(s):
57ce204
initial commit
Browse files- app.py +207 -0
- requirements.txt +107 -0
app.py
ADDED
@@ -0,0 +1,207 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import tempfile
|
2 |
+
|
3 |
+
from colpali_engine.models.paligemma_colbert_architecture import ColPali
|
4 |
+
from colpali_engine.utils.colpali_processing_utils import process_images
|
5 |
+
from colpali_engine.utils.colpali_processing_utils import process_queries
|
6 |
+
import google.generativeai as genai
|
7 |
+
import numpy as np
|
8 |
+
import pdf2image
|
9 |
+
from PIL import Image
|
10 |
+
import requests
|
11 |
+
import streamlit as st
|
12 |
+
import torch
|
13 |
+
from torch.utils.data import DataLoader
|
14 |
+
from transformers import AutoProcessor
|
15 |
+
|
16 |
+
|
17 |
+
SS = st.session_state
|
18 |
+
|
19 |
+
|
20 |
+
def initialize_session_state():
|
21 |
+
keys = [
|
22 |
+
"colpali_model",
|
23 |
+
"page_images",
|
24 |
+
"retrieved_page_images",
|
25 |
+
"response",
|
26 |
+
]
|
27 |
+
for key in keys:
|
28 |
+
if key not in SS:
|
29 |
+
SS[key] = None
|
30 |
+
|
31 |
+
|
32 |
+
def get_device():
|
33 |
+
if torch.cuda.is_available():
|
34 |
+
device = torch.device("cuda")
|
35 |
+
elif torch.backends.mps.is_available():
|
36 |
+
device = torch.device("mps")
|
37 |
+
else:
|
38 |
+
device = torch.device("cpu")
|
39 |
+
return device
|
40 |
+
|
41 |
+
|
42 |
+
def get_dtype(device: torch.device):
|
43 |
+
if device == torch.device("cuda"):
|
44 |
+
dtype = torch.bfloat16
|
45 |
+
elif device == torch.device("mps"):
|
46 |
+
dtype = torch.float32
|
47 |
+
else:
|
48 |
+
dtype = torch.float32
|
49 |
+
return dtype
|
50 |
+
|
51 |
+
|
52 |
+
def load_colpali_model():
|
53 |
+
paligemma_model_name = "google/paligemma-3b-mix-448"
|
54 |
+
colpali_model_name = "vidore/colpali"
|
55 |
+
device = get_device()
|
56 |
+
dtype = get_dtype(device)
|
57 |
+
|
58 |
+
model = ColPali.from_pretrained(paligemma_model_name, torch_dtype=dtype).eval()
|
59 |
+
model.load_adapter(colpali_model_name)
|
60 |
+
model.to(device)
|
61 |
+
processor = AutoProcessor.from_pretrained(colpali_model_name)
|
62 |
+
return model, processor
|
63 |
+
|
64 |
+
|
65 |
+
def embed_page_images(model, processor, page_images, batch_size=2):
|
66 |
+
dataloader = DataLoader(
|
67 |
+
page_images,
|
68 |
+
batch_size=batch_size,
|
69 |
+
shuffle=False,
|
70 |
+
collate_fn=lambda x: process_images(processor, x),
|
71 |
+
)
|
72 |
+
page_embeddings = []
|
73 |
+
for batch in dataloader:
|
74 |
+
with torch.no_grad():
|
75 |
+
batch = {k: v.to(model.device) for k, v in batch.items()}
|
76 |
+
embeddings = model(**batch)
|
77 |
+
page_embeddings.extend(list(torch.unbind(embeddings.to("cpu"))))
|
78 |
+
return np.array(page_embeddings)
|
79 |
+
|
80 |
+
|
81 |
+
def embed_query_texts(model, processor, query_texts, batch_size=1):
|
82 |
+
# 448 is from the paligemma resolution we loaded
|
83 |
+
dummy_image = Image.new("RGB", (448, 448), (255, 255, 255))
|
84 |
+
dataloader = DataLoader(
|
85 |
+
query_texts,
|
86 |
+
batch_size=batch_size,
|
87 |
+
shuffle=False,
|
88 |
+
collate_fn=lambda x: process_queries(processor, x, dummy_image),
|
89 |
+
)
|
90 |
+
query_embeddings = []
|
91 |
+
for batch in dataloader:
|
92 |
+
with torch.no_grad():
|
93 |
+
batch = {k: v.to(model.device) for k, v in batch.items()}
|
94 |
+
embeddings = model(**batch)
|
95 |
+
query_embeddings.extend(list(torch.unbind(embeddings.to("cpu"))))
|
96 |
+
return np.array(query_embeddings)[0]
|
97 |
+
|
98 |
+
|
99 |
+
|
100 |
+
def get_pdf_page_images_from_bytes(
|
101 |
+
pdf_bytes: bytes,
|
102 |
+
use_tmp_dir=False,
|
103 |
+
):
|
104 |
+
if use_tmp_dir:
|
105 |
+
with tempfile.TemporaryDirectory() as tmp_path:
|
106 |
+
page_images = pdf2image.convert_from_bytes(pdf_bytes, output_folder=tmp_path)
|
107 |
+
else:
|
108 |
+
page_images = pdf2image.convert_from_bytes(pdf_bytes)
|
109 |
+
return page_images
|
110 |
+
|
111 |
+
|
112 |
+
def get_pdf_bytes_from_url(url: str) -> bytes | None:
|
113 |
+
response = requests.get(url)
|
114 |
+
if response.status_code == 200:
|
115 |
+
return response.content
|
116 |
+
else:
|
117 |
+
print(f"failed to fetch {url}")
|
118 |
+
print(response)
|
119 |
+
return None
|
120 |
+
|
121 |
+
|
122 |
+
def display_pages(page_images, key):
|
123 |
+
n_cols = st.slider("ncol", min_value=1, max_value=8, value=4, step=1, key=key)
|
124 |
+
cols = st.columns(n_cols)
|
125 |
+
for ii_page, page_image in enumerate(page_images):
|
126 |
+
ii_col = ii_page % n_cols
|
127 |
+
with cols[ii_col]:
|
128 |
+
st.image(page_image)
|
129 |
+
|
130 |
+
|
131 |
+
initialize_session_state()
|
132 |
+
|
133 |
+
|
134 |
+
if SS["colpali_model"] is None:
|
135 |
+
SS["colpali_model"], SS["processor"] = load_colpali_model()
|
136 |
+
|
137 |
+
|
138 |
+
with st.sidebar:
|
139 |
+
url = st.text_input("arxiv url", "https://arxiv.org/pdf/2112.01488.pdf")
|
140 |
+
|
141 |
+
if st.button("load paper"):
|
142 |
+
pdf_bytes = get_pdf_bytes_from_url(url)
|
143 |
+
SS["page_images"] = get_pdf_page_images_from_bytes(pdf_bytes)
|
144 |
+
|
145 |
+
|
146 |
+
if st.button("embed pages"):
|
147 |
+
SS["page_embeddings"] = embed_page_images(
|
148 |
+
SS["colpali_model"],
|
149 |
+
SS["processor"],
|
150 |
+
SS["page_images"],
|
151 |
+
)
|
152 |
+
|
153 |
+
|
154 |
+
with st.container(border=True):
|
155 |
+
query = st.text_area("query")
|
156 |
+
top_k = st.slider("num pages to retrieve", min_value=1, max_value=8, value=3, step=1)
|
157 |
+
if st.button("answer query"):
|
158 |
+
SS["query_embeddings"] = embed_query_texts(
|
159 |
+
SS["colpali_model"],
|
160 |
+
SS["processor"],
|
161 |
+
[query],
|
162 |
+
)
|
163 |
+
|
164 |
+
page_query_scores = []
|
165 |
+
for ipage in range(len(SS["page_embeddings"])):
|
166 |
+
# for every query token find the max_sim with every page patch
|
167 |
+
patch_query_scores = np.dot(
|
168 |
+
SS['page_embeddings'][ipage],
|
169 |
+
SS["query_embeddings"].T,
|
170 |
+
)
|
171 |
+
max_sim_score = patch_query_scores.max(axis=0).sum()
|
172 |
+
page_query_scores.append(max_sim_score)
|
173 |
+
|
174 |
+
page_query_scores = np.array(page_query_scores)
|
175 |
+
i_ranked_pages = np.argsort(-page_query_scores)
|
176 |
+
|
177 |
+
page_images = []
|
178 |
+
for ii in range(top_k):
|
179 |
+
page_images.append(SS["page_images"][i_ranked_pages[ii]])
|
180 |
+
SS["retrieved_page_images"] = page_images
|
181 |
+
|
182 |
+
|
183 |
+
prompt = [
|
184 |
+
query +
|
185 |
+
" Think through your answer step by step. "
|
186 |
+
"Support your answer with descriptions of the images. "
|
187 |
+
"Do not infer information that is not in the images.",
|
188 |
+
] + page_images
|
189 |
+
|
190 |
+
genai.configure(api_key=st.secrets["google_genai_api_key"])
|
191 |
+
# gen_model = genai.GenerativeModel(model_name="gemini-1.5-flash")
|
192 |
+
gen_model = genai.GenerativeModel(model_name="gemini-1.5-pro")
|
193 |
+
response = gen_model.generate_content(prompt)
|
194 |
+
text = response.candidates[0].content.parts[0].text
|
195 |
+
SS["response"] = text
|
196 |
+
|
197 |
+
|
198 |
+
if SS["response"] is not None:
|
199 |
+
st.write(SS["response"])
|
200 |
+
st.header("Retrieved Pages")
|
201 |
+
display_pages(SS["retrieved_page_images"], "retrieved_pages")
|
202 |
+
|
203 |
+
|
204 |
+
|
205 |
+
if SS["page_images"] is not None:
|
206 |
+
st.header("All PDF Pages")
|
207 |
+
display_pages(SS["page_images"], "all_pages")
|
requirements.txt
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
accelerate==0.32.1
|
2 |
+
aiohttp==3.9.5
|
3 |
+
aiosignal==1.3.1
|
4 |
+
altair==5.3.0
|
5 |
+
annotated-types==0.7.0
|
6 |
+
async-timeout==4.0.3
|
7 |
+
attrs==23.2.0
|
8 |
+
black==24.4.2
|
9 |
+
blinker==1.8.2
|
10 |
+
cachetools==5.4.0
|
11 |
+
certifi==2024.7.4
|
12 |
+
charset-normalizer==3.3.2
|
13 |
+
click==8.1.7
|
14 |
+
colpali_engine @ git+https://github.com/illuin-tech/colpali@8b01824546c62e46383ce26b439d9bfc6468f763
|
15 |
+
datasets==2.20.0
|
16 |
+
dill==0.3.8
|
17 |
+
eval_type_backport==0.2.0
|
18 |
+
filelock==3.15.4
|
19 |
+
frozenlist==1.4.1
|
20 |
+
fsspec==2024.5.0
|
21 |
+
gitdb==4.0.11
|
22 |
+
GitPython==3.1.43
|
23 |
+
google-ai-generativelanguage==0.6.6
|
24 |
+
google-api-core==2.19.1
|
25 |
+
google-api-python-client==2.137.0
|
26 |
+
google-auth==2.32.0
|
27 |
+
google-auth-httplib2==0.2.0
|
28 |
+
google-generativeai==0.7.2
|
29 |
+
googleapis-common-protos==1.63.2
|
30 |
+
GPUtil==1.4.0
|
31 |
+
grpcio==1.65.1
|
32 |
+
grpcio-status==1.62.2
|
33 |
+
httplib2==0.22.0
|
34 |
+
huggingface-hub==0.24.0
|
35 |
+
idna==3.7
|
36 |
+
importlib_metadata==7.2.1
|
37 |
+
Jinja2==3.1.4
|
38 |
+
joblib==1.4.2
|
39 |
+
jsonschema==4.23.0
|
40 |
+
jsonschema-specifications==2023.12.1
|
41 |
+
markdown-it-py==3.0.0
|
42 |
+
MarkupSafe==2.1.5
|
43 |
+
mdurl==0.1.2
|
44 |
+
mpmath==1.3.0
|
45 |
+
mteb==1.12.85
|
46 |
+
multidict==6.0.5
|
47 |
+
multiprocess==0.70.16
|
48 |
+
mypy-extensions==1.0.0
|
49 |
+
networkx==3.3
|
50 |
+
numpy==1.26.4
|
51 |
+
packaging==23.2
|
52 |
+
pandas==2.2.2
|
53 |
+
pathspec==0.12.1
|
54 |
+
pdf2image==1.17.0
|
55 |
+
peft==0.11.1
|
56 |
+
pillow==10.4.0
|
57 |
+
platformdirs==4.2.2
|
58 |
+
polars==1.2.1
|
59 |
+
proto-plus==1.24.0
|
60 |
+
protobuf==4.25.3
|
61 |
+
psutil==6.0.0
|
62 |
+
pyarrow==17.0.0
|
63 |
+
pyarrow-hotfix==0.6
|
64 |
+
pyasn1==0.6.0
|
65 |
+
pyasn1_modules==0.4.0
|
66 |
+
pydantic==2.8.2
|
67 |
+
pydantic_core==2.20.1
|
68 |
+
pydeck==0.9.1
|
69 |
+
Pygments==2.18.0
|
70 |
+
pyparsing==3.1.2
|
71 |
+
python-dateutil==2.9.0.post0
|
72 |
+
pytrec_eval-terrier==0.5.6
|
73 |
+
pytz==2024.1
|
74 |
+
PyYAML==6.0.1
|
75 |
+
referencing==0.35.1
|
76 |
+
regex==2024.5.15
|
77 |
+
requests==2.32.3
|
78 |
+
rich==13.7.1
|
79 |
+
rpds-py==0.19.0
|
80 |
+
rsa==4.9
|
81 |
+
safetensors==0.4.3
|
82 |
+
scikit-learn==1.5.1
|
83 |
+
scipy==1.14.0
|
84 |
+
sentence-transformers==3.0.1
|
85 |
+
six==1.16.0
|
86 |
+
smmap==5.0.1
|
87 |
+
streamlit==1.31.1
|
88 |
+
sympy==1.13.1
|
89 |
+
tenacity==8.5.0
|
90 |
+
threadpoolctl==3.5.0
|
91 |
+
tokenizers==0.19.1
|
92 |
+
toml==0.10.2
|
93 |
+
tomli==2.0.1
|
94 |
+
toolz==0.12.1
|
95 |
+
torch==2.3.1
|
96 |
+
tornado==6.4.1
|
97 |
+
tqdm==4.66.4
|
98 |
+
transformers==4.42.4
|
99 |
+
typing_extensions==4.12.2
|
100 |
+
tzdata==2024.1
|
101 |
+
tzlocal==5.2
|
102 |
+
uritemplate==4.1.1
|
103 |
+
urllib3==2.2.2
|
104 |
+
validators==0.33.0
|
105 |
+
xxhash==3.4.1
|
106 |
+
yarl==1.9.4
|
107 |
+
zipp==3.19.2
|