File size: 10,171 Bytes
af91fc8
 
 
 
 
 
ba6957d
 
 
 
 
 
af91fc8
 
ba6957d
 
 
 
 
 
 
 
 
 
 
 
af91fc8
ba6957d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af91fc8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba6957d
af91fc8
 
ba6957d
af91fc8
ba6957d
af91fc8
 
 
 
 
 
 
 
ba6957d
af91fc8
 
 
ba6957d
af91fc8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f51752f
 
 
af91fc8
f51752f
 
 
 
 
 
 
 
 
af91fc8
f51752f
af91fc8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f51752f
af91fc8
f51752f
 
 
af91fc8
 
f51752f
12b8641
f51752f
af91fc8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6d0a9b
af91fc8
 
 
 
c6d0a9b
af91fc8
 
 
 
 
 
 
12b8641
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
import gradio as gr
import PyPDF2
import docx2txt
from typing import Optional, List, Dict
import re
from pinecone_handler import PineconeHandler
import hopsworks
import pandas as pd
import os
from dotenv import load_dotenv

load_dotenv()

class Database:
    def __init__(self):
        # Initialize Hopsworks
        project = "orestavf"
        api_key = os.getenv("HOPSWORKS_API_KEY")
        self.project = hopsworks.login(project=project, api_key_value=api_key)
        self.fs = self.project.get_feature_store()
        self.feedback_fg = self.fs.get_or_create_feature_group(
            name="job_feedback",
            version=1,
            primary_key=["job_id"],
            description="Feature group for storing user feedback on job matches.",
            online_enabled=True
        )

    def save_feedback(self, job_id: str, resume_text: str, headline: str,
                    occupation: str, description: str, is_relevant: bool):
        # Prepare feedback data as a pandas DataFrame
        feedback_data = pd.DataFrame([{
            "job_id": job_id,
            "resume_text": resume_text,
            "job_headline": headline,
            "job_occupation": occupation,
            "job_description": description,
            "is_relevant": is_relevant,
            #"timestamp": datetime.now()
        }])

        self.feedback_fg.insert(feedback_data)
        print(f"Feedback saved to Hopsworks for job ID: {job_id}")

def extract_text(file) -> Optional[str]:
    """Extract text from uploaded resume file"""
    if not file:
        return None
        
    try:
        file_type = file.name.split('.')[-1].lower()
        
        if file_type == 'pdf':
            pdf_reader = PyPDF2.PdfReader(file)
            return "\n".join(page.extract_text() for page in pdf_reader.pages)
            
        elif file_type in ['docx', 'doc']:
            return docx2txt.process(file)
            
        elif file_type == 'txt':
            return str(file.read(), "utf-8")
            
        else:
            return f"Unsupported file format: {file_type}"
    except Exception as e:
        return f"Error processing file: {str(e)}"

class JobMatcher:
    def __init__(self):
        self.handler = PineconeHandler()
        self.db = Database()
        self.current_results = []
        self.current_resume_text = None

    def search_jobs(self, file, num_results: int, city: str = "") -> List[Dict]:
        """Search for matching jobs and return results"""
        if not file:
            return [{"error": "Please upload a resume file."}]
            
        try:
            resume_text = extract_text(file)
            if not resume_text:
                return [{"error": "Could not extract text from resume."}]
                
            self.current_resume_text = resume_text
            resume_text = re.sub(r'\s+', ' ', resume_text).strip()
            
            # Get results from Pinecone
            results = self.handler.search_similar_ads(resume_text, top_k=num_results, city=city.strip())
            
            if not results:
                return [{"error": "No matching jobs found. Try adjusting your search criteria."}]
                
            # Store results with their Pinecone IDs
            self.current_results = [
                {
                    'id': result.id,  # Use Pinecone's ID
                    'score': result.score,
                    'metadata': result.metadata
                }
                for result in results
            ]
            
            return self.current_results
            
        except Exception as e:
            return [{"error": f"Error: {str(e)}"}]

    def submit_feedback(self, pinecone_id: str, is_relevant: bool) -> str:
        """Submit feedback for a specific job using Pinecone ID"""
        try:
            # Find the job in current results by Pinecone ID
            job = next((job for job in self.current_results if job['id'] == pinecone_id), None)

            if not job:
                return "Error: Job not found"

            metadata = job['metadata']

            self.db.save_feedback(
                job_id=pinecone_id,  # Use Pinecone's ID
                resume_text=self.current_resume_text,
                headline=metadata['headline'],
                occupation=metadata['occupation'],
                description=metadata['description'],
                is_relevant=is_relevant
            )
            return f"\u2713 Feedback saved for '{metadata['headline']}'"
        except Exception as e:
            return f"Error saving feedback: {str(e)}"


def create_interface():
    matcher = JobMatcher()
    
    with gr.Blocks() as interface:
        gr.Markdown("# AI-Powered Job Search")
        
        with gr.Row():
            file_input = gr.File(label="Upload Resume (PDF, DOCX, or TXT)")
            num_results = gr.Slider(minimum=1, maximum=20, value=5, step=1, label="Number of Results")
            city_input = gr.Textbox(label="Filter by City (Optional)")
        
        search_btn = gr.Button("Search Jobs")
        status = gr.Textbox(label="Status", interactive=False)
        
        # Container for job results and feedback buttons
        job_containers = []
        for i in range(20):  # Support up to 20 results
            with gr.Column(visible=False) as container:
                job_content = gr.Markdown("", elem_id=f"job_content_{i}")
                with gr.Row():
                    relevant_btn = gr.Button("πŸ‘ Relevant", elem_id=f"relevant_{i}")
                    not_relevant_btn = gr.Button("πŸ‘Ž Not Relevant", elem_id=f"not_relevant_{i}")
                feedback_status = gr.Markdown("")
            job_containers.append({
                'container': container,
                'content': job_content,
                'feedback_status': feedback_status,
                'pinecone_id': None  # Will store Pinecone ID for each job
            })
        
        def update_job_displays(file, num_results, city):
            results = matcher.search_jobs(file, num_results, city)
            
            # Initialize updates list with default values for all containers
            updates = []
            
            if "error" in results[0]:
                # If there's an error, hide all containers and show error message
                for _ in range(20):
                    updates.extend([
                        gr.update(visible=False),  # Container visibility
                        "",                        # Job content
                        ""                         # Feedback status
                    ])
                updates.append(results[0]["error"])  # Status message
                return updates
            
            # Process results and generate updates
            for i in range(20):
                if i < len(results):
                    job = results[i]
                    metadata = job['metadata']
                    
                    # Store Pinecone ID for this container
                    job_containers[i]['pinecone_id'] = job['id']
                    
                    content = f"""
### {metadata['headline']}
**Match Score:** {job['score']:.2f}  
**Location:** {metadata['city']}  
**Occupation:** {metadata['occupation']}  
**Published:** {metadata['published']}

{metadata['description'][:500]}...

**Contact:** {metadata.get('email', 'Not provided')}  
**More Info:** {metadata.get('webpage_url', 'Not available')}

*Job ID: {job['id']}*
"""
                    updates.extend([
                        gr.update(visible=True),  # Container visibility
                        content,                  # Job content
                        ""                        # Reset feedback status
                    ])
                else:
                    # For unused containers, hide them and clear content
                    updates.extend([
                        gr.update(visible=False),  # Container visibility
                        "",                        # Job content
                        ""                         # Reset feedback status
                    ])
            
            # Add final status message
            updates.append("Jobs found! If you decide to help us by rating them as relevant or not relevant, your CV will be uploaded to our servers and used for improving the service. ")
            
            return updates
        
        def handle_feedback(container_index: int, is_relevant: bool):
            pinecone_id = job_containers[container_index]['pinecone_id']
            if pinecone_id:
                response = matcher.submit_feedback(pinecone_id, is_relevant)
                return response
            return "Error: Job ID not found"
        
        # Connect search button
        all_outputs = []
        for container in job_containers:
            all_outputs.extend([
                container['container'],
                container['content'],
                container['feedback_status']
            ])
        all_outputs.append(status)
        
        search_btn.click(
            fn=update_job_displays,
            inputs=[file_input, num_results, city_input],
            outputs=all_outputs
        )
        
        # Connect feedback buttons for each container
        for i, container in enumerate(job_containers):
            container_obj = container['container']
            feedback_status = container['feedback_status']
            
            # Get the buttons from the container
            relevant_btn = container_obj.children[1].children[0]
            not_relevant_btn = container_obj.children[1].children[1]
            
            relevant_btn.click(
                fn=lambda idx=i: handle_feedback(idx, True),
                inputs=[],
                outputs=[feedback_status]
            )
            not_relevant_btn.click(
                fn=lambda idx=i: handle_feedback(idx, False),
                inputs=[],
                outputs=[feedback_status]
            )

    return interface

if __name__ == "__main__":
    interface = create_interface()
    interface.launch(debug=True)