Spaces:
Running
Running
update gradio ui and create database
Browse files- feedback.db +0 -0
- gradio.py +0 -276
- gradioapp.py +261 -0
feedback.db
ADDED
Binary file (61.4 kB). View file
|
|
gradio.py
DELETED
@@ -1,276 +0,0 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import PyPDF2
|
3 |
-
import docx2txt
|
4 |
-
import re
|
5 |
-
from typing import Optional
|
6 |
-
from datetime import datetime
|
7 |
-
|
8 |
-
# --- Import your custom modules
|
9 |
-
from pinecone_handler import PineconeHandler
|
10 |
-
from time_handling import read_timestamp
|
11 |
-
from settings import DATE_FORMAT
|
12 |
-
|
13 |
-
# ------------------------------------------------------------------
|
14 |
-
# Global or session-level store for job data
|
15 |
-
# ------------------------------------------------------------------
|
16 |
-
MAX_RESULTS = 10 # Up to 10 job ads displayed
|
17 |
-
JOBS_CACHE = [None] * MAX_RESULTS # Each element will hold (ad_id, ad_metadata, full_resume_text)
|
18 |
-
|
19 |
-
|
20 |
-
# ------------------------------------------------------------------
|
21 |
-
# Helper functions (same as your original ones)
|
22 |
-
# ------------------------------------------------------------------
|
23 |
-
def extract_text_from_pdf(pdf_file) -> str:
|
24 |
-
pdf_reader = PyPDF2.PdfReader(pdf_file)
|
25 |
-
text = ""
|
26 |
-
for page in pdf_reader.pages:
|
27 |
-
text += page.extract_text() + "\n"
|
28 |
-
return text
|
29 |
-
|
30 |
-
def extract_text_from_docx(docx_file) -> str:
|
31 |
-
text = docx2txt.process(docx_file)
|
32 |
-
return text
|
33 |
-
|
34 |
-
def extract_resume_text(uploaded_file) -> Optional[str]:
|
35 |
-
if uploaded_file is None:
|
36 |
-
return None
|
37 |
-
|
38 |
-
file_extension = uploaded_file.name.split('.')[-1].lower()
|
39 |
-
try:
|
40 |
-
if file_extension == 'pdf':
|
41 |
-
return extract_text_from_pdf(uploaded_file)
|
42 |
-
elif file_extension in ['docx', 'doc']:
|
43 |
-
return extract_text_from_docx(uploaded_file.name)
|
44 |
-
elif file_extension == 'txt':
|
45 |
-
return uploaded_file.read().decode("utf-8", errors="replace")
|
46 |
-
else:
|
47 |
-
return f"ERROR: Unsupported file format: {file_extension}"
|
48 |
-
except Exception as e:
|
49 |
-
return f"ERROR: {str(e)}"
|
50 |
-
|
51 |
-
def clean_resume_text(text: str) -> str:
|
52 |
-
if not text:
|
53 |
-
return ""
|
54 |
-
# Remove special characters and extra whitespace
|
55 |
-
text = re.sub(r'\s+', ' ', text)
|
56 |
-
return text.strip()
|
57 |
-
|
58 |
-
def is_description_truncated(description: str) -> bool:
|
59 |
-
truncation_indicators = [
|
60 |
-
lambda x: len(x) >= 995, # close to 1000 char limit
|
61 |
-
lambda x: x.rstrip().endswith(('...', 'β¦')),
|
62 |
-
lambda x: re.search(r'\w+$', x) and not re.search(r'[.!?]$', x),
|
63 |
-
]
|
64 |
-
return any(indicator(description) for indicator in truncation_indicators)
|
65 |
-
|
66 |
-
def format_job_description(description: str, truncated: bool = False) -> str:
|
67 |
-
if not description:
|
68 |
-
return ""
|
69 |
-
|
70 |
-
sections = [
|
71 |
-
"About us", "About you", "About the role", "About the position",
|
72 |
-
"Requirements", "Qualifications", "Skills", "Responsibilities",
|
73 |
-
"What you'll do", "What we offer", "Benefits", "Your profile",
|
74 |
-
"Required skills", "What you need", "Who you are"
|
75 |
-
]
|
76 |
-
|
77 |
-
formatted_text = description
|
78 |
-
for section in sections:
|
79 |
-
pattern = re.compile(f'({section}:?)', re.IGNORECASE)
|
80 |
-
formatted_text = pattern.sub(r'\n\n\\1', formatted_text)
|
81 |
-
|
82 |
-
formatted_text = re.sub(r'[β’-]\s*', '\nβ’ ', formatted_text)
|
83 |
-
formatted_text = re.sub(r'(?<=\w)\.(?=\s*[A-Z])', '.\n', formatted_text)
|
84 |
-
formatted_text = re.sub(r'\n{3,}', '\n\n', formatted_text)
|
85 |
-
|
86 |
-
if truncated:
|
87 |
-
formatted_text = formatted_text.rstrip() + "..."
|
88 |
-
|
89 |
-
return formatted_text.strip()
|
90 |
-
|
91 |
-
|
92 |
-
# ------------------------------------------------------------------
|
93 |
-
# Callback for Like/Dislike
|
94 |
-
# ------------------------------------------------------------------
|
95 |
-
def user_interaction(index_in_cache, action):
|
96 |
-
"""
|
97 |
-
index_in_cache: which job row's button was clicked (0..MAX_RESULTS-1)
|
98 |
-
action: 'like' or 'dislike'
|
99 |
-
|
100 |
-
We'll retrieve:
|
101 |
-
- ad_id
|
102 |
-
- resume_text
|
103 |
-
- possibly do something with them (e.g. store in DB)
|
104 |
-
"""
|
105 |
-
if index_in_cache < 0 or index_in_cache >= MAX_RESULTS:
|
106 |
-
return "Invalid job index."
|
107 |
-
|
108 |
-
cached = JOBS_CACHE[index_in_cache]
|
109 |
-
if not cached:
|
110 |
-
return "No job data at this slot."
|
111 |
-
|
112 |
-
ad_id, metadata, full_resume_text = cached
|
113 |
-
|
114 |
-
# Example logging or storing
|
115 |
-
# In reality, you might store this info in a database or call an API
|
116 |
-
print(f"[USER_INTERACTION] Action={action}, AdID={ad_id}, CV length={len(full_resume_text)} chars.")
|
117 |
-
|
118 |
-
return f"You {action}d job {ad_id}."
|
119 |
-
|
120 |
-
|
121 |
-
# ------------------------------------------------------------------
|
122 |
-
# Callback to search jobs
|
123 |
-
# ------------------------------------------------------------------
|
124 |
-
def search_jobs(resume_file, num_results, city_filter):
|
125 |
-
"""
|
126 |
-
1) Extract + clean resume
|
127 |
-
2) Query Pinecone
|
128 |
-
3) Populate the placeholders for up to MAX_RESULTS job ads
|
129 |
-
4) Return status message
|
130 |
-
"""
|
131 |
-
# Clear out global cache
|
132 |
-
for i in range(MAX_RESULTS):
|
133 |
-
JOBS_CACHE[i] = None
|
134 |
-
|
135 |
-
if resume_file is None:
|
136 |
-
return "Please upload a resume first."
|
137 |
-
|
138 |
-
resume_text = extract_resume_text(resume_file)
|
139 |
-
if resume_text is None or resume_text.startswith("ERROR"):
|
140 |
-
return f"Error processing file: {resume_text}"
|
141 |
-
|
142 |
-
clean_text = clean_resume_text(resume_text)
|
143 |
-
if not clean_text:
|
144 |
-
return "No text extracted from resume or file is invalid."
|
145 |
-
|
146 |
-
# Attempt to read the database update time
|
147 |
-
try:
|
148 |
-
last_update = read_timestamp()
|
149 |
-
last_update_dt = datetime.strptime(last_update, DATE_FORMAT)
|
150 |
-
db_info = f"**Database last update:** {last_update_dt.strftime('%B %d, %Y at %I:%M %p')} (Stockholm Time)\n\n"
|
151 |
-
except Exception as e:
|
152 |
-
db_info = f"Error reading timestamp: {str(e)}\n\n"
|
153 |
-
|
154 |
-
# Pinecone init
|
155 |
-
try:
|
156 |
-
handler = PineconeHandler()
|
157 |
-
except Exception as e:
|
158 |
-
return f"{db_info}Error connecting to Pinecone: {str(e)}"
|
159 |
-
|
160 |
-
# Search
|
161 |
-
try:
|
162 |
-
results = handler.search_similar_ads(
|
163 |
-
clean_text, top_k=num_results, city=city_filter.strip()
|
164 |
-
)
|
165 |
-
except Exception as e:
|
166 |
-
return f"{db_info}Error searching jobs: {str(e)}"
|
167 |
-
|
168 |
-
if not results:
|
169 |
-
return f"{db_info}No matching jobs found."
|
170 |
-
|
171 |
-
# Fill up to MAX_RESULTS
|
172 |
-
text_output = [db_info + f"**Found {len(results)} matching jobs:**\n"]
|
173 |
-
|
174 |
-
for i, match in enumerate(results[:MAX_RESULTS]):
|
175 |
-
metadata = match.metadata
|
176 |
-
score = match.score
|
177 |
-
|
178 |
-
# We'll store data in our global JOBS_CACHE so user_interaction can retrieve it
|
179 |
-
# You might have an 'id' or something in metadata that you treat as the ad_id
|
180 |
-
ad_id = str(metadata.get('job_id', f"Unknown_{i}"))
|
181 |
-
JOBS_CACHE[i] = (ad_id, metadata, clean_text)
|
182 |
-
|
183 |
-
headline = metadata.get('headline', 'Untitled')
|
184 |
-
city = metadata.get('city', 'Unknown City')
|
185 |
-
occupation = metadata.get('occupation', 'Unknown Occupation')
|
186 |
-
published = metadata.get('published', 'Unknown Date')
|
187 |
-
desc = metadata.get('description', '')
|
188 |
-
truncated = is_description_truncated(desc)
|
189 |
-
snippet = desc[:2000] if truncated else desc
|
190 |
-
formatted_desc = format_job_description(snippet, truncated=truncated)
|
191 |
-
|
192 |
-
text_output.append(f"### {i+1}. {headline}")
|
193 |
-
text_output.append(f"**Ad ID**: `{ad_id}`")
|
194 |
-
text_output.append(f"**Match Score (Cosine)**: {score:.2f}")
|
195 |
-
text_output.append(f"**Location**: {city}")
|
196 |
-
text_output.append(f"**Occupation**: {occupation}")
|
197 |
-
text_output.append(f"**Published**: {published}")
|
198 |
-
text_output.append(formatted_desc or "*No description*")
|
199 |
-
|
200 |
-
if truncated:
|
201 |
-
text_output.append(
|
202 |
-
"> **Note**: Description truncated. See original link for full details."
|
203 |
-
)
|
204 |
-
if 'webpage_url' in metadata:
|
205 |
-
text_output.append(f"[View Original]({metadata['webpage_url']})")
|
206 |
-
|
207 |
-
text_output.append("---")
|
208 |
-
|
209 |
-
return "\n".join(text_output)
|
210 |
-
|
211 |
-
|
212 |
-
# ------------------------------------------------------------------
|
213 |
-
# Build Gradio interface
|
214 |
-
# ------------------------------------------------------------------
|
215 |
-
def build_interface():
|
216 |
-
with gr.Blocks() as demo:
|
217 |
-
gr.Markdown("# AI-Powered Job Search (Gradio with Like/Dislike)")
|
218 |
-
|
219 |
-
with gr.Row():
|
220 |
-
resume_input = gr.File(label="Upload your resume (PDF, DOCX, DOC, or TXT)")
|
221 |
-
num_results_slider = gr.Slider(
|
222 |
-
minimum=1, maximum=MAX_RESULTS, value=5,
|
223 |
-
step=1, label="Number of results"
|
224 |
-
)
|
225 |
-
city_input = gr.Textbox(
|
226 |
-
label="Filter by city (optional)",
|
227 |
-
placeholder="Enter a city to filter job results by location"
|
228 |
-
)
|
229 |
-
|
230 |
-
search_button = gr.Button("Search Jobs")
|
231 |
-
results_markdown = gr.Markdown()
|
232 |
-
|
233 |
-
# We create up to MAX_RESULTS rows for like/dislike
|
234 |
-
# Each row has two buttons that map to user_interaction
|
235 |
-
# We'll label them with the index so we can pass it to user_interaction
|
236 |
-
output_messages = []
|
237 |
-
for i in range(MAX_RESULTS):
|
238 |
-
with gr.Row(visible=True) as row_i:
|
239 |
-
# Each row: "Like" & "Dislike"
|
240 |
-
btn_like = gr.Button(f"Like #{i+1}", variant="secondary", visible=True)
|
241 |
-
btn_dislike = gr.Button(f"Dislike #{i+1}", variant="secondary", visible=True)
|
242 |
-
|
243 |
-
# user_interaction callback => returns a small message
|
244 |
-
msg = gr.Markdown(visible=True)
|
245 |
-
output_messages.append(msg)
|
246 |
-
|
247 |
-
# Wire the buttons to user_interaction
|
248 |
-
# We pass:
|
249 |
-
# - The index in the JOBS_CACHE
|
250 |
-
# - The literal string 'like' or 'dislike'
|
251 |
-
# The function returns a small text update
|
252 |
-
btn_like.click(
|
253 |
-
fn=user_interaction,
|
254 |
-
inputs=[gr.State(i), gr.State("like")],
|
255 |
-
outputs=[msg]
|
256 |
-
)
|
257 |
-
btn_dislike.click(
|
258 |
-
fn=user_interaction,
|
259 |
-
inputs=[gr.State(i), gr.State("dislike")],
|
260 |
-
outputs=[msg]
|
261 |
-
)
|
262 |
-
|
263 |
-
# On search click => call search_jobs
|
264 |
-
# outputs => results_markdown (which displays the job list)
|
265 |
-
search_button.click(
|
266 |
-
fn=search_jobs,
|
267 |
-
inputs=[resume_input, num_results_slider, city_input],
|
268 |
-
outputs=[results_markdown]
|
269 |
-
)
|
270 |
-
|
271 |
-
return demo
|
272 |
-
|
273 |
-
|
274 |
-
if __name__ == "__main__":
|
275 |
-
demo_app = build_interface()
|
276 |
-
demo_app.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
gradioapp.py
ADDED
@@ -0,0 +1,261 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import PyPDF2
|
3 |
+
import docx2txt
|
4 |
+
from typing import Optional, List, Dict
|
5 |
+
import re
|
6 |
+
from pinecone_handler import PineconeHandler
|
7 |
+
from datetime import datetime
|
8 |
+
import sqlite3
|
9 |
+
import threading
|
10 |
+
|
11 |
+
class Database:
|
12 |
+
def __init__(self, db_name="feedback.db"):
|
13 |
+
self.db_name = db_name
|
14 |
+
self.thread_local = threading.local()
|
15 |
+
self._create_tables()
|
16 |
+
|
17 |
+
def get_connection(self):
|
18 |
+
if not hasattr(self.thread_local, "connection"):
|
19 |
+
self.thread_local.connection = sqlite3.connect(self.db_name)
|
20 |
+
return self.thread_local.connection
|
21 |
+
|
22 |
+
def _create_tables(self):
|
23 |
+
conn = sqlite3.connect(self.db_name)
|
24 |
+
cursor = conn.cursor()
|
25 |
+
cursor.execute('''
|
26 |
+
CREATE TABLE IF NOT EXISTS feedback (
|
27 |
+
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
28 |
+
job_id TEXT,
|
29 |
+
resume_text TEXT,
|
30 |
+
job_headline TEXT,
|
31 |
+
job_occupation TEXT,
|
32 |
+
job_description TEXT,
|
33 |
+
is_relevant BOOLEAN,
|
34 |
+
timestamp DATETIME DEFAULT CURRENT_TIMESTAMP
|
35 |
+
)
|
36 |
+
''')
|
37 |
+
conn.commit()
|
38 |
+
conn.close()
|
39 |
+
|
40 |
+
def save_feedback(self, job_id: str, resume_text: str, headline: str,
|
41 |
+
occupation: str, description: str, is_relevant: bool):
|
42 |
+
conn = self.get_connection()
|
43 |
+
cursor = conn.cursor()
|
44 |
+
try:
|
45 |
+
cursor.execute('''
|
46 |
+
INSERT INTO feedback
|
47 |
+
(job_id, resume_text, job_headline, job_occupation, job_description, is_relevant)
|
48 |
+
VALUES (?, ?, ?, ?, ?, ?)
|
49 |
+
''', (job_id, resume_text, headline, occupation, description, is_relevant))
|
50 |
+
conn.commit()
|
51 |
+
except Exception as e:
|
52 |
+
conn.rollback()
|
53 |
+
raise e
|
54 |
+
|
55 |
+
def extract_text(file) -> Optional[str]:
|
56 |
+
"""Extract text from uploaded resume file"""
|
57 |
+
if not file:
|
58 |
+
return None
|
59 |
+
|
60 |
+
try:
|
61 |
+
file_type = file.name.split('.')[-1].lower()
|
62 |
+
|
63 |
+
if file_type == 'pdf':
|
64 |
+
pdf_reader = PyPDF2.PdfReader(file)
|
65 |
+
return "\n".join(page.extract_text() for page in pdf_reader.pages)
|
66 |
+
|
67 |
+
elif file_type in ['docx', 'doc']:
|
68 |
+
return docx2txt.process(file)
|
69 |
+
|
70 |
+
elif file_type == 'txt':
|
71 |
+
return str(file.read(), "utf-8")
|
72 |
+
|
73 |
+
else:
|
74 |
+
return f"Unsupported file format: {file_type}"
|
75 |
+
except Exception as e:
|
76 |
+
return f"Error processing file: {str(e)}"
|
77 |
+
|
78 |
+
class JobMatcher:
|
79 |
+
def __init__(self):
|
80 |
+
self.handler = PineconeHandler()
|
81 |
+
self.db = Database()
|
82 |
+
self.current_results = []
|
83 |
+
self.current_resume_text = None
|
84 |
+
|
85 |
+
def search_jobs(self, file, num_results: int, city: str = "") -> List[Dict]:
|
86 |
+
"""Search for matching jobs and return results"""
|
87 |
+
if not file:
|
88 |
+
return [{"error": "Please upload a resume file."}]
|
89 |
+
|
90 |
+
try:
|
91 |
+
resume_text = extract_text(file)
|
92 |
+
if not resume_text:
|
93 |
+
return [{"error": "Could not extract text from resume."}]
|
94 |
+
|
95 |
+
self.current_resume_text = resume_text
|
96 |
+
resume_text = re.sub(r'\s+', ' ', resume_text).strip()
|
97 |
+
|
98 |
+
# Get results from Pinecone
|
99 |
+
results = self.handler.search_similar_ads(resume_text, top_k=num_results, city=city.strip())
|
100 |
+
|
101 |
+
if not results:
|
102 |
+
return [{"error": "No matching jobs found. Try adjusting your search criteria."}]
|
103 |
+
|
104 |
+
# Store results with their Pinecone IDs
|
105 |
+
self.current_results = [
|
106 |
+
{
|
107 |
+
'id': result.id, # Use Pinecone's ID
|
108 |
+
'score': result.score,
|
109 |
+
'metadata': result.metadata
|
110 |
+
}
|
111 |
+
for result in results
|
112 |
+
]
|
113 |
+
|
114 |
+
return self.current_results
|
115 |
+
|
116 |
+
except Exception as e:
|
117 |
+
return [{"error": f"Error: {str(e)}"}]
|
118 |
+
|
119 |
+
def submit_feedback(self, pinecone_id: str, is_relevant: bool) -> str:
|
120 |
+
"""Submit feedback for a specific job using Pinecone ID"""
|
121 |
+
try:
|
122 |
+
# Find the job in current results by Pinecone ID
|
123 |
+
job = next((job for job in self.current_results if job['id'] == pinecone_id), None)
|
124 |
+
|
125 |
+
if not job:
|
126 |
+
return "Error: Job not found"
|
127 |
+
|
128 |
+
metadata = job['metadata']
|
129 |
+
|
130 |
+
self.db.save_feedback(
|
131 |
+
job_id=pinecone_id, # Use Pinecone's ID
|
132 |
+
resume_text=self.current_resume_text,
|
133 |
+
headline=metadata['headline'],
|
134 |
+
occupation=metadata['occupation'],
|
135 |
+
description=metadata['description'],
|
136 |
+
is_relevant=is_relevant
|
137 |
+
)
|
138 |
+
return f"β Feedback saved for '{metadata['headline']}'"
|
139 |
+
except Exception as e:
|
140 |
+
return f"Error saving feedback: {str(e)}"
|
141 |
+
|
142 |
+
def create_interface():
|
143 |
+
matcher = JobMatcher()
|
144 |
+
|
145 |
+
with gr.Blocks() as interface:
|
146 |
+
gr.Markdown("# AI-Powered Job Search")
|
147 |
+
|
148 |
+
with gr.Row():
|
149 |
+
file_input = gr.File(label="Upload Resume (PDF, DOCX, or TXT)")
|
150 |
+
num_results = gr.Slider(minimum=1, maximum=20, value=5, step=1, label="Number of Results")
|
151 |
+
city_input = gr.Textbox(label="Filter by City (Optional)")
|
152 |
+
|
153 |
+
search_btn = gr.Button("Search Jobs")
|
154 |
+
status = gr.Textbox(label="Status", interactive=False)
|
155 |
+
|
156 |
+
# Container for job results and feedback buttons
|
157 |
+
job_containers = []
|
158 |
+
for i in range(20): # Support up to 20 results
|
159 |
+
with gr.Column(visible=False) as container:
|
160 |
+
job_content = gr.Markdown("", elem_id=f"job_content_{i}")
|
161 |
+
with gr.Row():
|
162 |
+
relevant_btn = gr.Button("π Relevant", elem_id=f"relevant_{i}")
|
163 |
+
not_relevant_btn = gr.Button("π Not Relevant", elem_id=f"not_relevant_{i}")
|
164 |
+
feedback_status = gr.Markdown("")
|
165 |
+
job_containers.append({
|
166 |
+
'container': container,
|
167 |
+
'content': job_content,
|
168 |
+
'feedback_status': feedback_status,
|
169 |
+
'pinecone_id': None # Will store Pinecone ID for each job
|
170 |
+
})
|
171 |
+
|
172 |
+
def update_job_displays(file, num_results, city):
|
173 |
+
results = matcher.search_jobs(file, num_results, city)
|
174 |
+
|
175 |
+
if "error" in results[0]:
|
176 |
+
return ([gr.update(visible=False)] * 20) + [results[0]["error"]]
|
177 |
+
|
178 |
+
updates = []
|
179 |
+
for i in range(20):
|
180 |
+
if i < len(results):
|
181 |
+
job = results[i]
|
182 |
+
metadata = job['metadata']
|
183 |
+
|
184 |
+
# Store Pinecone ID for this container
|
185 |
+
job_containers[i]['pinecone_id'] = job['id']
|
186 |
+
|
187 |
+
content = f"""
|
188 |
+
### {metadata['headline']}
|
189 |
+
**Match Score:** {job['score']:.2f}
|
190 |
+
**Location:** {metadata['city']}
|
191 |
+
**Occupation:** {metadata['occupation']}
|
192 |
+
**Published:** {metadata['published']}
|
193 |
+
|
194 |
+
{metadata['description'][:500]}...
|
195 |
+
|
196 |
+
**Contact:** {metadata.get('email', 'Not provided')}
|
197 |
+
**More Info:** {metadata.get('webpage_url', 'Not available')}
|
198 |
+
|
199 |
+
*Job ID: {job['id']}*
|
200 |
+
"""
|
201 |
+
updates.extend([
|
202 |
+
gr.update(visible=True), # Container visibility
|
203 |
+
content, # Job content
|
204 |
+
"" # Reset feedback status
|
205 |
+
])
|
206 |
+
else:
|
207 |
+
updates.extend([
|
208 |
+
gr.update(visible=False),
|
209 |
+
"",
|
210 |
+
""
|
211 |
+
])
|
212 |
+
|
213 |
+
updates.append("Jobs found! Rate them as relevant or not relevant.")
|
214 |
+
return updates
|
215 |
+
|
216 |
+
def handle_feedback(container_index: int, is_relevant: bool):
|
217 |
+
pinecone_id = job_containers[container_index]['pinecone_id']
|
218 |
+
if pinecone_id:
|
219 |
+
response = matcher.submit_feedback(pinecone_id, is_relevant)
|
220 |
+
return response
|
221 |
+
return "Error: Job ID not found"
|
222 |
+
|
223 |
+
# Connect search button
|
224 |
+
all_outputs = []
|
225 |
+
for container in job_containers:
|
226 |
+
all_outputs.extend([
|
227 |
+
container['container'],
|
228 |
+
container['content'],
|
229 |
+
container['feedback_status']
|
230 |
+
])
|
231 |
+
all_outputs.append(status)
|
232 |
+
|
233 |
+
search_btn.click(
|
234 |
+
fn=update_job_displays,
|
235 |
+
inputs=[file_input, num_results, city_input],
|
236 |
+
outputs=all_outputs
|
237 |
+
)
|
238 |
+
|
239 |
+
# Connect feedback buttons for each container
|
240 |
+
for i, container in enumerate(job_containers):
|
241 |
+
container_obj = container['container']
|
242 |
+
feedback_status = container['feedback_status']
|
243 |
+
|
244 |
+
# Get the buttons from the container
|
245 |
+
relevant_btn = container_obj.children[1].children[0]
|
246 |
+
not_relevant_btn = container_obj.children[1].children[1]
|
247 |
+
|
248 |
+
relevant_btn.click(
|
249 |
+
fn=lambda idx=i: handle_feedback(idx, True),
|
250 |
+
outputs=[feedback_status]
|
251 |
+
)
|
252 |
+
not_relevant_btn.click(
|
253 |
+
fn=lambda idx=i: handle_feedback(idx, False),
|
254 |
+
outputs=[feedback_status]
|
255 |
+
)
|
256 |
+
|
257 |
+
return interface
|
258 |
+
|
259 |
+
if __name__ == "__main__":
|
260 |
+
interface = create_interface()
|
261 |
+
interface.launch()
|