koclip / image2text.py
amphora's picture
chore: added explanation
42c971d
raw
history blame
2.17 kB
import streamlit as st
import numpy as np
import jax
import jax.numpy as jnp
from PIL import Image
from utils import load_model
def app(model_name):
model, processor = load_model(f"koclip/{model_name}")
st.title("Zero-shot Image Classification")
st.markdown(
"""
This demonstration explores capability of KoCLIP in the field of Zero-Shot Prediction. This demo takes a set of image and captions from, and predicts the most likely label among the different captions given.
KoCLIP is a retraining of OpenAI's CLIP model using 82,783 images from MSCOCO dataset and Korean caption annotations. Korean translation of caption annotations were obtained from AI Hub. Base model koclip uses klue/roberta as text encoder and openai/clip-vit-base-patch32 as image encoder. Larger model koclip-large uses klue/roberta as text encoder and bigger google/vit-large-patch16-224 as image encoder.
"""
)
query = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
captions = st.text_input("์‚ฌ์šฉํ•˜์‹ค ์บก์…˜์„ ์‰ผํ‘œ ๋‹จ์œ„๋กœ ๊ตฌ๋ถ„ํ•ด์„œ ์ ์–ด์ฃผ์„ธ์š”", value="๊ณ ์–‘์ด,๊ฐ•์•„์ง€,๋Šํ‹ฐ๋‚˜๋ฌด...")
if st.button("์งˆ๋ฌธ (Query)"):
if query is None:
st.error("Please upload an image query.")
else:
image = Image.open(query)
st.image(image)
# pixel_values = processor(
# text=[""], images=image, return_tensors="jax", padding=True
# ).pixel_values
# pixel_values = jnp.transpose(pixel_values, axes=[0, 2, 3, 1])
# vec = np.asarray(model.get_image_features(pixel_values))
captions = captions.split(",")
inputs = processor(text=captions, images=image, return_tensors="jax", padding=True)
inputs["pixel_values"] = jnp.transpose(
inputs["pixel_values"], axes=[0, 2, 3, 1]
)
outputs = model(**inputs)
probs = jax.nn.softmax(outputs.logits_per_image, axis=1)
for idx, prob in sorted(enumerate(*probs), key=lambda x: x[1], reverse=True):
st.text(f"Score: `{prob}`, {captions[idx]}")