File size: 2,168 Bytes
f1d50b1
e4b9c8b
8ff0261
5dce03a
e4b9c8b
f1d50b1
 
 
 
 
e4b9c8b
f1d50b1
e4b9c8b
2cf3514
 
42c971d
 
2cf3514
 
e4b9c8b
 
b3a4deb
e4b9c8b
 
 
 
 
 
8ff0261
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4b9c8b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import streamlit as st
import numpy as np
import jax
import jax.numpy as jnp
from PIL import Image

from utils import load_model


def app(model_name):
    model, processor = load_model(f"koclip/{model_name}")

    st.title("Zero-shot Image Classification")
    st.markdown(
        """
        This demonstration explores capability of KoCLIP in the field of Zero-Shot Prediction. This demo takes a set of image and captions from, and predicts the most likely label among the different captions given. 
KoCLIP is a retraining of OpenAI's CLIP model using 82,783 images from MSCOCO dataset and Korean caption annotations. Korean translation of caption annotations were obtained from AI Hub. Base model koclip uses klue/roberta as text encoder and openai/clip-vit-base-patch32 as image encoder. Larger model koclip-large uses klue/roberta as text encoder and bigger google/vit-large-patch16-224 as image encoder.
    """
    )

    query = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
    captions = st.text_input("์‚ฌ์šฉํ•˜์‹ค ์บก์…˜์„ ์‰ผํ‘œ ๋‹จ์œ„๋กœ ๊ตฌ๋ถ„ํ•ด์„œ ์ ์–ด์ฃผ์„ธ์š”", value="๊ณ ์–‘์ด,๊ฐ•์•„์ง€,๋Šํ‹ฐ๋‚˜๋ฌด...")

    if st.button("์งˆ๋ฌธ (Query)"):
        if query is None:
            st.error("Please upload an image query.")
        else:
            image = Image.open(query)
            st.image(image)
            # pixel_values = processor(
            #     text=[""], images=image, return_tensors="jax", padding=True
            # ).pixel_values
            # pixel_values = jnp.transpose(pixel_values, axes=[0, 2, 3, 1])
            # vec = np.asarray(model.get_image_features(pixel_values))
            captions = captions.split(",")
            inputs = processor(text=captions, images=image, return_tensors="jax", padding=True)
            inputs["pixel_values"] = jnp.transpose(
                inputs["pixel_values"], axes=[0, 2, 3, 1]
            )
            outputs = model(**inputs)
            probs = jax.nn.softmax(outputs.logits_per_image, axis=1)

            for idx, prob in sorted(enumerate(*probs), key=lambda x: x[1], reverse=True):
                st.text(f"Score: `{prob}`, {captions[idx]}")