Spaces:
Running
on
L4
Running
on
L4
Update app.py
#2
by
PoTaTo721
- opened
app.py
CHANGED
@@ -5,7 +5,7 @@ import hydra
|
|
5 |
|
6 |
# Download if not exists
|
7 |
os.makedirs("checkpoints", exist_ok=True)
|
8 |
-
snapshot_download(repo_id="fishaudio/fish-speech-1", local_dir="./checkpoints/fish-speech-1")
|
9 |
|
10 |
print("All checkpoints downloaded")
|
11 |
|
@@ -30,8 +30,8 @@ os.environ["EINX_FILTER_TRACEBACK"] = "false"
|
|
30 |
|
31 |
HEADER_MD = """# Fish Speech
|
32 |
|
33 |
-
## The demo in this space is version 1.
|
34 |
-
## 该 Demo 为 Fish Speech 1.
|
35 |
|
36 |
A text-to-speech model based on VQ-GAN and Llama developed by [Fish Audio](https://fish.audio).
|
37 |
由 [Fish Audio](https://fish.audio) 研发的基于 VQ-GAN 和 Llama 的多语种语音合成.
|
@@ -39,14 +39,14 @@ A text-to-speech model based on VQ-GAN and Llama developed by [Fish Audio](https
|
|
39 |
You can find the source code [here](https://github.com/fishaudio/fish-speech) and models [here](https://huggingface.co/fishaudio/fish-speech-1).
|
40 |
你可以在 [这里](https://github.com/fishaudio/fish-speech) 找到源代码和 [这里](https://huggingface.co/fishaudio/fish-speech-1) 找到模型.
|
41 |
|
42 |
-
Related code
|
43 |
-
|
44 |
|
45 |
We are not responsible for any misuse of the model, please consider your local laws and regulations before using it.
|
46 |
我们不对模型的任何滥用负责,请在使用之前考虑您当地的法律法规.
|
47 |
|
48 |
-
The model running in this WebUI is Fish Speech V1 Medium SFT
|
49 |
-
在此 WebUI 中运行的模型是 Fish Speech V1 Medium SFT
|
50 |
"""
|
51 |
|
52 |
TEXTBOX_PLACEHOLDER = """Put your text here. 在此处输入文本."""
|
@@ -85,36 +85,27 @@ def inference(
|
|
85 |
top_p,
|
86 |
repetition_penalty,
|
87 |
temperature,
|
88 |
-
|
89 |
):
|
90 |
if args.max_gradio_length > 0 and len(text) > args.max_gradio_length:
|
91 |
-
return
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
reference_audio_content, _ = librosa.load(
|
98 |
-
reference_audio, sr=vqgan_model.sampling_rate, mono=True
|
99 |
-
)
|
100 |
-
audios = torch.from_numpy(reference_audio_content).to(vqgan_model.device)[
|
101 |
-
None, None, :
|
102 |
-
]
|
103 |
-
|
104 |
-
logger.info(
|
105 |
-
f"Loaded audio with {audios.shape[2] / vqgan_model.sampling_rate:.2f} seconds"
|
106 |
)
|
107 |
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
|
|
113 |
|
114 |
# LLAMA Inference
|
115 |
request = dict(
|
116 |
-
|
117 |
-
device=vqgan_model.device,
|
118 |
max_new_tokens=max_new_tokens,
|
119 |
text=text,
|
120 |
top_p=top_p,
|
@@ -123,43 +114,246 @@ def inference(
|
|
123 |
compile=args.compile,
|
124 |
iterative_prompt=chunk_length > 0,
|
125 |
chunk_length=chunk_length,
|
126 |
-
max_length=
|
127 |
-
speaker=speaker if speaker else None,
|
128 |
prompt_tokens=prompt_tokens if enable_reference_audio else None,
|
129 |
prompt_text=reference_text if enable_reference_audio else None,
|
130 |
)
|
131 |
|
132 |
-
|
133 |
-
|
134 |
-
|
|
|
|
|
|
|
135 |
)
|
136 |
-
llama_queue.put(payload)
|
137 |
|
138 |
-
|
|
|
|
|
|
|
|
|
139 |
while True:
|
140 |
-
result =
|
141 |
-
if result == "
|
142 |
-
|
143 |
-
continue
|
144 |
-
|
145 |
-
if result == "done":
|
146 |
-
if payload["success"] is False:
|
147 |
-
return None, build_html_error_message(payload["response"])
|
148 |
break
|
149 |
|
150 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
|
152 |
-
codes = torch.cat(codes, dim=1)
|
153 |
|
154 |
-
|
155 |
-
|
156 |
-
fake_audios = vqgan_model.decode(
|
157 |
-
indices=codes[None], feature_lengths=feature_lengths, return_audios=True
|
158 |
-
)[0, 0]
|
159 |
|
160 |
-
|
|
|
|
|
|
|
|
|
161 |
|
162 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
163 |
|
164 |
|
165 |
def build_app():
|
@@ -170,95 +364,182 @@ def build_app():
|
|
170 |
app.load(
|
171 |
None,
|
172 |
None,
|
173 |
-
js="() => {const params = new URLSearchParams(window.location.search);if (!params.has('__theme')) {params.set('__theme', '
|
|
|
174 |
)
|
175 |
|
176 |
# Inference
|
177 |
with gr.Row():
|
178 |
with gr.Column(scale=3):
|
179 |
text = gr.Textbox(
|
180 |
-
label="Input Text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
181 |
)
|
182 |
|
183 |
with gr.Row():
|
184 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
185 |
chunk_length = gr.Slider(
|
186 |
-
label="Iterative Prompt Length, 0 means off
|
187 |
minimum=0,
|
188 |
-
maximum=
|
189 |
-
value=
|
190 |
step=8,
|
191 |
)
|
192 |
|
193 |
max_new_tokens = gr.Slider(
|
194 |
-
label="Maximum tokens per batch, 0 means no limit
|
195 |
-
minimum=
|
196 |
-
maximum=
|
197 |
-
value=
|
198 |
step=8,
|
199 |
)
|
200 |
|
201 |
top_p = gr.Slider(
|
202 |
-
label="Top-P",
|
|
|
|
|
|
|
|
|
203 |
)
|
204 |
|
205 |
repetition_penalty = gr.Slider(
|
206 |
-
label="Repetition Penalty",
|
207 |
-
minimum=
|
208 |
-
maximum=
|
209 |
-
value=1.
|
210 |
step=0.01,
|
211 |
)
|
212 |
|
213 |
temperature = gr.Slider(
|
214 |
label="Temperature",
|
215 |
-
minimum=0,
|
216 |
-
maximum=
|
217 |
value=0.7,
|
218 |
step=0.01,
|
219 |
)
|
220 |
|
221 |
-
|
222 |
-
label="Speaker / 说话人",
|
223 |
-
placeholder="Type name of the speaker / 输入说话人的名称",
|
224 |
-
lines=1,
|
225 |
-
)
|
226 |
-
|
227 |
-
with gr.Tab(label="Reference Audio / 参考音频"):
|
228 |
gr.Markdown(
|
229 |
-
|
|
|
|
|
230 |
)
|
231 |
|
232 |
enable_reference_audio = gr.Checkbox(
|
233 |
-
label="Enable Reference Audio
|
234 |
)
|
235 |
reference_audio = gr.Audio(
|
236 |
-
label="Reference Audio
|
237 |
type="filepath",
|
238 |
)
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
243 |
)
|
244 |
|
245 |
with gr.Column(scale=3):
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
250 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
251 |
with gr.Row():
|
252 |
with gr.Column(scale=3):
|
253 |
generate = gr.Button(
|
254 |
-
value="\U0001F3A7
|
|
|
|
|
|
|
|
|
255 |
)
|
256 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
257 |
# # Submit
|
258 |
generate.click(
|
259 |
-
|
260 |
[
|
261 |
-
|
262 |
enable_reference_audio,
|
263 |
reference_audio,
|
264 |
reference_text,
|
@@ -267,12 +548,29 @@ def build_app():
|
|
267 |
top_p,
|
268 |
repetition_penalty,
|
269 |
temperature,
|
270 |
-
|
|
|
271 |
],
|
272 |
-
[
|
273 |
concurrency_limit=1,
|
274 |
)
|
275 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
276 |
return app
|
277 |
|
278 |
|
@@ -281,74 +579,60 @@ def parse_args():
|
|
281 |
parser.add_argument(
|
282 |
"--llama-checkpoint-path",
|
283 |
type=Path,
|
284 |
-
default="checkpoints/
|
285 |
)
|
286 |
parser.add_argument(
|
287 |
-
"--
|
288 |
-
)
|
289 |
-
parser.add_argument(
|
290 |
-
"--vqgan-checkpoint-path",
|
291 |
type=Path,
|
292 |
-
default="checkpoints/
|
293 |
)
|
294 |
-
parser.add_argument("--
|
295 |
-
parser.add_argument("--tokenizer", type=str, default="fishaudio/fish-speech-1")
|
296 |
parser.add_argument("--device", type=str, default="cuda")
|
297 |
parser.add_argument("--half", action="store_true")
|
298 |
-
parser.add_argument("--max-length", type=int, default=2048)
|
299 |
parser.add_argument("--compile", action="store_true")
|
300 |
parser.add_argument("--max-gradio-length", type=int, default=0)
|
|
|
301 |
|
302 |
return parser.parse_args()
|
303 |
|
304 |
|
305 |
if __name__ == "__main__":
|
306 |
args = parse_args()
|
307 |
-
|
308 |
args.precision = torch.half if args.half else torch.bfloat16
|
309 |
-
args.compile = True
|
310 |
-
args.max_gradio_length = 1024
|
311 |
-
args.tokenizer = "./checkpoints/fish-speech-1"
|
312 |
-
args.llama_checkpoint_path = "./checkpoints/fish-speech-1/text2semantic-sft-medium-v1-4k.pth"
|
313 |
-
args.llama_config_name = "dual_ar_2_codebook_medium"
|
314 |
-
args.vqgan_checkpoint_path = "./checkpoints/fish-speech-1/vq-gan-group-fsq-2x1024.pth"
|
315 |
-
args.vqgan_config_name = "vqgan_pretrain"
|
316 |
|
317 |
logger.info("Loading Llama model...")
|
318 |
llama_queue = launch_thread_safe_queue(
|
319 |
-
config_name=args.llama_config_name,
|
320 |
checkpoint_path=args.llama_checkpoint_path,
|
321 |
device=args.device,
|
322 |
precision=args.precision,
|
323 |
-
max_length=args.max_length,
|
324 |
compile=args.compile,
|
325 |
)
|
326 |
-
llama_tokenizer = AutoTokenizer.from_pretrained(args.tokenizer)
|
327 |
logger.info("Llama model loaded, loading VQ-GAN model...")
|
328 |
|
329 |
-
|
330 |
-
config_name=args.
|
331 |
-
checkpoint_path=args.
|
332 |
device=args.device,
|
333 |
)
|
334 |
|
335 |
-
logger.info("
|
336 |
|
337 |
# Dry run to check if the model is loaded correctly and avoid the first-time latency
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
|
|
349 |
)
|
350 |
|
351 |
logger.info("Warming up done, launching the web UI...")
|
352 |
|
353 |
app = build_app()
|
354 |
-
app.launch(show_api=
|
|
|
5 |
|
6 |
# Download if not exists
|
7 |
os.makedirs("checkpoints", exist_ok=True)
|
8 |
+
snapshot_download(repo_id="fishaudio/fish-speech-1.2-sft", local_dir="./checkpoints/fish-speech-1.2")
|
9 |
|
10 |
print("All checkpoints downloaded")
|
11 |
|
|
|
30 |
|
31 |
HEADER_MD = """# Fish Speech
|
32 |
|
33 |
+
## The demo in this space is version 1.2, Please check [Fish Audio](https://fish.audio) for the best model.
|
34 |
+
## 该 Demo 为 Fish Speech 1.2 版本, 请在 [Fish Audio](https://fish.audio) 体验最新 DEMO.
|
35 |
|
36 |
A text-to-speech model based on VQ-GAN and Llama developed by [Fish Audio](https://fish.audio).
|
37 |
由 [Fish Audio](https://fish.audio) 研发的基于 VQ-GAN 和 Llama 的多语种语音合成.
|
|
|
39 |
You can find the source code [here](https://github.com/fishaudio/fish-speech) and models [here](https://huggingface.co/fishaudio/fish-speech-1).
|
40 |
你可以在 [这里](https://github.com/fishaudio/fish-speech) 找到源代码和 [这里](https://huggingface.co/fishaudio/fish-speech-1) 找到模型.
|
41 |
|
42 |
+
Related code and weights are released under CC BY-NC-SA 4.0 License.
|
43 |
+
相关代码,权重使用 CC BY-NC-SA 4.0 许可证发布.
|
44 |
|
45 |
We are not responsible for any misuse of the model, please consider your local laws and regulations before using it.
|
46 |
我们不对模型的任何滥用负责,请在使用之前考虑您当地的法律法规.
|
47 |
|
48 |
+
The model running in this WebUI is Fish Speech V1.2 Medium SFT
|
49 |
+
在此 WebUI 中运行的模型是 Fish Speech V1.2 Medium SFT
|
50 |
"""
|
51 |
|
52 |
TEXTBOX_PLACEHOLDER = """Put your text here. 在此处输入文本."""
|
|
|
85 |
top_p,
|
86 |
repetition_penalty,
|
87 |
temperature,
|
88 |
+
streaming=False,
|
89 |
):
|
90 |
if args.max_gradio_length > 0 and len(text) > args.max_gradio_length:
|
91 |
+
return (
|
92 |
+
None,
|
93 |
+
None,
|
94 |
+
i18n("Text is too long, please keep it under {} characters.").format(
|
95 |
+
args.max_gradio_length
|
96 |
+
),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
)
|
98 |
|
99 |
+
# Parse reference audio aka prompt
|
100 |
+
prompt_tokens = encode_reference(
|
101 |
+
decoder_model=decoder_model,
|
102 |
+
reference_audio=reference_audio,
|
103 |
+
enable_reference_audio=enable_reference_audio,
|
104 |
+
)
|
105 |
|
106 |
# LLAMA Inference
|
107 |
request = dict(
|
108 |
+
device=decoder_model.device,
|
|
|
109 |
max_new_tokens=max_new_tokens,
|
110 |
text=text,
|
111 |
top_p=top_p,
|
|
|
114 |
compile=args.compile,
|
115 |
iterative_prompt=chunk_length > 0,
|
116 |
chunk_length=chunk_length,
|
117 |
+
max_length=2048,
|
|
|
118 |
prompt_tokens=prompt_tokens if enable_reference_audio else None,
|
119 |
prompt_text=reference_text if enable_reference_audio else None,
|
120 |
)
|
121 |
|
122 |
+
response_queue = queue.Queue()
|
123 |
+
llama_queue.put(
|
124 |
+
GenerateRequest(
|
125 |
+
request=request,
|
126 |
+
response_queue=response_queue,
|
127 |
+
)
|
128 |
)
|
|
|
129 |
|
130 |
+
if streaming:
|
131 |
+
yield wav_chunk_header(), None, None
|
132 |
+
|
133 |
+
segments = []
|
134 |
+
|
135 |
while True:
|
136 |
+
result: WrappedGenerateResponse = response_queue.get()
|
137 |
+
if result.status == "error":
|
138 |
+
yield None, None, build_html_error_message(result.response)
|
|
|
|
|
|
|
|
|
|
|
139 |
break
|
140 |
|
141 |
+
result: GenerateResponse = result.response
|
142 |
+
if result.action == "next":
|
143 |
+
break
|
144 |
+
|
145 |
+
with torch.autocast(
|
146 |
+
device_type=(
|
147 |
+
"cpu"
|
148 |
+
if decoder_model.device.type == "mps"
|
149 |
+
else decoder_model.device.type
|
150 |
+
),
|
151 |
+
dtype=args.precision,
|
152 |
+
):
|
153 |
+
fake_audios = decode_vq_tokens(
|
154 |
+
decoder_model=decoder_model,
|
155 |
+
codes=result.codes,
|
156 |
+
)
|
157 |
+
|
158 |
+
fake_audios = fake_audios.float().cpu().numpy()
|
159 |
+
segments.append(fake_audios)
|
160 |
+
|
161 |
+
if streaming:
|
162 |
+
yield (fake_audios * 32768).astype(np.int16).tobytes(), None, None
|
163 |
+
|
164 |
+
if len(segments) == 0:
|
165 |
+
return (
|
166 |
+
None,
|
167 |
+
None,
|
168 |
+
build_html_error_message(
|
169 |
+
i18n("No audio generated, please check the input text.")
|
170 |
+
),
|
171 |
+
)
|
172 |
+
|
173 |
+
# No matter streaming or not, we need to return the final audio
|
174 |
+
audio = np.concatenate(segments, axis=0)
|
175 |
+
yield None, (decoder_model.spec_transform.sample_rate, audio), None
|
176 |
+
|
177 |
+
if torch.cuda.is_available():
|
178 |
+
torch.cuda.empty_cache()
|
179 |
+
gc.collect()
|
180 |
+
|
181 |
+
|
182 |
+
def inference_with_auto_rerank(
|
183 |
+
text,
|
184 |
+
enable_reference_audio,
|
185 |
+
reference_audio,
|
186 |
+
reference_text,
|
187 |
+
max_new_tokens,
|
188 |
+
chunk_length,
|
189 |
+
top_p,
|
190 |
+
repetition_penalty,
|
191 |
+
temperature,
|
192 |
+
use_auto_rerank,
|
193 |
+
streaming=False,
|
194 |
+
):
|
195 |
+
|
196 |
+
max_attempts = 2 if use_auto_rerank else 1
|
197 |
+
best_wer = float("inf")
|
198 |
+
best_audio = None
|
199 |
+
best_sample_rate = None
|
200 |
+
|
201 |
+
for attempt in range(max_attempts):
|
202 |
+
audio_generator = inference(
|
203 |
+
text,
|
204 |
+
enable_reference_audio,
|
205 |
+
reference_audio,
|
206 |
+
reference_text,
|
207 |
+
max_new_tokens,
|
208 |
+
chunk_length,
|
209 |
+
top_p,
|
210 |
+
repetition_penalty,
|
211 |
+
temperature,
|
212 |
+
streaming=False,
|
213 |
+
)
|
214 |
+
|
215 |
+
# 获取音频数据
|
216 |
+
for _ in audio_generator:
|
217 |
+
pass
|
218 |
+
_, (sample_rate, audio), message = _
|
219 |
+
|
220 |
+
if audio is None:
|
221 |
+
return None, None, message
|
222 |
+
|
223 |
+
if not use_auto_rerank:
|
224 |
+
return None, (sample_rate, audio), None
|
225 |
+
|
226 |
+
asr_result = batch_asr(asr_model, [audio], sample_rate)[0]
|
227 |
+
wer = calculate_wer(text, asr_result["text"])
|
228 |
+
if wer <= 0.3 and not asr_result["huge_gap"]:
|
229 |
+
return None, (sample_rate, audio), None
|
230 |
+
|
231 |
+
if wer < best_wer:
|
232 |
+
best_wer = wer
|
233 |
+
best_audio = audio
|
234 |
+
best_sample_rate = sample_rate
|
235 |
+
|
236 |
+
if attempt == max_attempts - 1:
|
237 |
+
break
|
238 |
+
|
239 |
+
return None, (best_sample_rate, best_audio), None
|
240 |
+
|
241 |
+
|
242 |
+
inference_stream = partial(inference, streaming=True)
|
243 |
+
|
244 |
+
n_audios = 4
|
245 |
+
|
246 |
+
global_audio_list = []
|
247 |
+
global_error_list = []
|
248 |
+
|
249 |
+
|
250 |
+
def inference_wrapper(
|
251 |
+
text,
|
252 |
+
enable_reference_audio,
|
253 |
+
reference_audio,
|
254 |
+
reference_text,
|
255 |
+
max_new_tokens,
|
256 |
+
chunk_length,
|
257 |
+
top_p,
|
258 |
+
repetition_penalty,
|
259 |
+
temperature,
|
260 |
+
batch_infer_num,
|
261 |
+
if_load_asr_model,
|
262 |
+
):
|
263 |
+
audios = []
|
264 |
+
errors = []
|
265 |
+
|
266 |
+
for _ in range(batch_infer_num):
|
267 |
+
result = inference_with_auto_rerank(
|
268 |
+
text,
|
269 |
+
enable_reference_audio,
|
270 |
+
reference_audio,
|
271 |
+
reference_text,
|
272 |
+
max_new_tokens,
|
273 |
+
chunk_length,
|
274 |
+
top_p,
|
275 |
+
repetition_penalty,
|
276 |
+
temperature,
|
277 |
+
if_load_asr_model,
|
278 |
+
)
|
279 |
+
|
280 |
+
_, audio_data, error_message = result
|
281 |
+
|
282 |
+
audios.append(
|
283 |
+
gr.Audio(value=audio_data if audio_data else None, visible=True),
|
284 |
+
)
|
285 |
+
errors.append(
|
286 |
+
gr.HTML(value=error_message if error_message else None, visible=True),
|
287 |
+
)
|
288 |
+
|
289 |
+
for _ in range(batch_infer_num, n_audios):
|
290 |
+
audios.append(
|
291 |
+
gr.Audio(value=None, visible=False),
|
292 |
+
)
|
293 |
+
errors.append(
|
294 |
+
gr.HTML(value=None, visible=False),
|
295 |
+
)
|
296 |
+
|
297 |
+
return None, *audios, *errors
|
298 |
+
|
299 |
+
|
300 |
+
def wav_chunk_header(sample_rate=44100, bit_depth=16, channels=1):
|
301 |
+
buffer = io.BytesIO()
|
302 |
+
|
303 |
+
with wave.open(buffer, "wb") as wav_file:
|
304 |
+
wav_file.setnchannels(channels)
|
305 |
+
wav_file.setsampwidth(bit_depth // 8)
|
306 |
+
wav_file.setframerate(sample_rate)
|
307 |
+
|
308 |
+
wav_header_bytes = buffer.getvalue()
|
309 |
+
buffer.close()
|
310 |
+
return wav_header_bytes
|
311 |
+
|
312 |
+
|
313 |
+
def normalize_text(user_input, use_normalization):
|
314 |
+
if use_normalization:
|
315 |
+
return ChnNormedText(raw_text=user_input).normalize()
|
316 |
+
else:
|
317 |
+
return user_input
|
318 |
+
|
319 |
+
|
320 |
+
asr_model = None
|
321 |
|
|
|
322 |
|
323 |
+
def change_if_load_asr_model(if_load):
|
324 |
+
global asr_model
|
|
|
|
|
|
|
325 |
|
326 |
+
if if_load:
|
327 |
+
gr.Warning("Loading faster whisper model...")
|
328 |
+
if asr_model is None:
|
329 |
+
asr_model = load_model()
|
330 |
+
return gr.Checkbox(label="Unload faster whisper model", value=if_load)
|
331 |
|
332 |
+
if if_load is False:
|
333 |
+
gr.Warning("Unloading faster whisper model...")
|
334 |
+
del asr_model
|
335 |
+
asr_model = None
|
336 |
+
if torch.cuda.is_available():
|
337 |
+
torch.cuda.empty_cache()
|
338 |
+
gc.collect()
|
339 |
+
return gr.Checkbox(label="Load faster whisper model", value=if_load)
|
340 |
+
|
341 |
+
|
342 |
+
def change_if_auto_label(if_load, if_auto_label, enable_ref, ref_audio, ref_text):
|
343 |
+
if if_load and asr_model is not None:
|
344 |
+
if (
|
345 |
+
if_auto_label
|
346 |
+
and enable_ref
|
347 |
+
and ref_audio is not None
|
348 |
+
and ref_text.strip() == ""
|
349 |
+
):
|
350 |
+
data, sample_rate = librosa.load(ref_audio)
|
351 |
+
res = batch_asr(asr_model, [data], sample_rate)[0]
|
352 |
+
ref_text = res["text"]
|
353 |
+
else:
|
354 |
+
gr.Warning("Whisper model not loaded!")
|
355 |
+
|
356 |
+
return gr.Textbox(value=ref_text)
|
357 |
|
358 |
|
359 |
def build_app():
|
|
|
364 |
app.load(
|
365 |
None,
|
366 |
None,
|
367 |
+
js="() => {const params = new URLSearchParams(window.location.search);if (!params.has('__theme')) {params.set('__theme', '%s');window.location.search = params.toString();}}"
|
368 |
+
% args.theme,
|
369 |
)
|
370 |
|
371 |
# Inference
|
372 |
with gr.Row():
|
373 |
with gr.Column(scale=3):
|
374 |
text = gr.Textbox(
|
375 |
+
label=i18n("Input Text"), placeholder=TEXTBOX_PLACEHOLDER, lines=10
|
376 |
+
)
|
377 |
+
refined_text = gr.Textbox(
|
378 |
+
label=i18n("Realtime Transform Text"),
|
379 |
+
placeholder=i18n(
|
380 |
+
"Normalization Result Preview (Currently Only Chinese)"
|
381 |
+
),
|
382 |
+
lines=5,
|
383 |
+
interactive=False,
|
384 |
)
|
385 |
|
386 |
with gr.Row():
|
387 |
+
if_refine_text = gr.Checkbox(
|
388 |
+
label=i18n("Text Normalization"),
|
389 |
+
value=True,
|
390 |
+
scale=1,
|
391 |
+
)
|
392 |
+
|
393 |
+
if_load_asr_model = gr.Checkbox(
|
394 |
+
label=i18n("Load / Unload ASR model for auto-reranking"),
|
395 |
+
value=False,
|
396 |
+
scale=3,
|
397 |
+
)
|
398 |
+
|
399 |
+
with gr.Row():
|
400 |
+
with gr.Tab(label=i18n("Advanced Config")):
|
401 |
chunk_length = gr.Slider(
|
402 |
+
label=i18n("Iterative Prompt Length, 0 means off"),
|
403 |
minimum=0,
|
404 |
+
maximum=500,
|
405 |
+
value=100,
|
406 |
step=8,
|
407 |
)
|
408 |
|
409 |
max_new_tokens = gr.Slider(
|
410 |
+
label=i18n("Maximum tokens per batch, 0 means no limit"),
|
411 |
+
minimum=0,
|
412 |
+
maximum=2048,
|
413 |
+
value=1024, # 0 means no limit
|
414 |
step=8,
|
415 |
)
|
416 |
|
417 |
top_p = gr.Slider(
|
418 |
+
label="Top-P",
|
419 |
+
minimum=0.6,
|
420 |
+
maximum=0.9,
|
421 |
+
value=0.7,
|
422 |
+
step=0.01,
|
423 |
)
|
424 |
|
425 |
repetition_penalty = gr.Slider(
|
426 |
+
label=i18n("Repetition Penalty"),
|
427 |
+
minimum=1,
|
428 |
+
maximum=1.5,
|
429 |
+
value=1.2,
|
430 |
step=0.01,
|
431 |
)
|
432 |
|
433 |
temperature = gr.Slider(
|
434 |
label="Temperature",
|
435 |
+
minimum=0.6,
|
436 |
+
maximum=0.9,
|
437 |
value=0.7,
|
438 |
step=0.01,
|
439 |
)
|
440 |
|
441 |
+
with gr.Tab(label=i18n("Reference Audio")):
|
|
|
|
|
|
|
|
|
|
|
|
|
442 |
gr.Markdown(
|
443 |
+
i18n(
|
444 |
+
"5 to 10 seconds of reference audio, useful for specifying speaker."
|
445 |
+
)
|
446 |
)
|
447 |
|
448 |
enable_reference_audio = gr.Checkbox(
|
449 |
+
label=i18n("Enable Reference Audio"),
|
450 |
)
|
451 |
reference_audio = gr.Audio(
|
452 |
+
label=i18n("Reference Audio"),
|
453 |
type="filepath",
|
454 |
)
|
455 |
+
with gr.Row():
|
456 |
+
if_auto_label = gr.Checkbox(
|
457 |
+
label=i18n("Auto Labeling"),
|
458 |
+
min_width=100,
|
459 |
+
scale=0,
|
460 |
+
value=False,
|
461 |
+
)
|
462 |
+
reference_text = gr.Textbox(
|
463 |
+
label=i18n("Reference Text"),
|
464 |
+
lines=1,
|
465 |
+
placeholder="在一无所知中,梦里的一天结束了,一个新的「轮回」便会开始。",
|
466 |
+
value="",
|
467 |
+
)
|
468 |
+
with gr.Tab(label=i18n("Batch Inference")):
|
469 |
+
batch_infer_num = gr.Slider(
|
470 |
+
label="Batch infer nums",
|
471 |
+
minimum=1,
|
472 |
+
maximum=n_audios,
|
473 |
+
step=1,
|
474 |
+
value=1,
|
475 |
)
|
476 |
|
477 |
with gr.Column(scale=3):
|
478 |
+
for _ in range(n_audios):
|
479 |
+
with gr.Row():
|
480 |
+
error = gr.HTML(
|
481 |
+
label=i18n("Error Message"),
|
482 |
+
visible=True if _ == 0 else False,
|
483 |
+
)
|
484 |
+
global_error_list.append(error)
|
485 |
+
with gr.Row():
|
486 |
+
audio = gr.Audio(
|
487 |
+
label=i18n("Generated Audio"),
|
488 |
+
type="numpy",
|
489 |
+
interactive=False,
|
490 |
+
visible=True if _ == 0 else False,
|
491 |
+
)
|
492 |
+
global_audio_list.append(audio)
|
493 |
|
494 |
+
with gr.Row():
|
495 |
+
stream_audio = gr.Audio(
|
496 |
+
label=i18n("Streaming Audio"),
|
497 |
+
streaming=True,
|
498 |
+
autoplay=True,
|
499 |
+
interactive=False,
|
500 |
+
show_download_button=True,
|
501 |
+
)
|
502 |
with gr.Row():
|
503 |
with gr.Column(scale=3):
|
504 |
generate = gr.Button(
|
505 |
+
value="\U0001F3A7 " + i18n("Generate"), variant="primary"
|
506 |
+
)
|
507 |
+
generate_stream = gr.Button(
|
508 |
+
value="\U0001F3A7 " + i18n("Streaming Generate"),
|
509 |
+
variant="primary",
|
510 |
)
|
511 |
|
512 |
+
text.input(
|
513 |
+
fn=normalize_text, inputs=[text, if_refine_text], outputs=[refined_text]
|
514 |
+
)
|
515 |
+
|
516 |
+
if_load_asr_model.change(
|
517 |
+
fn=change_if_load_asr_model,
|
518 |
+
inputs=[if_load_asr_model],
|
519 |
+
outputs=[if_load_asr_model],
|
520 |
+
)
|
521 |
+
|
522 |
+
if_auto_label.change(
|
523 |
+
fn=lambda: gr.Textbox(value=""),
|
524 |
+
inputs=[],
|
525 |
+
outputs=[reference_text],
|
526 |
+
).then(
|
527 |
+
fn=change_if_auto_label,
|
528 |
+
inputs=[
|
529 |
+
if_load_asr_model,
|
530 |
+
if_auto_label,
|
531 |
+
enable_reference_audio,
|
532 |
+
reference_audio,
|
533 |
+
reference_text,
|
534 |
+
],
|
535 |
+
outputs=[reference_text],
|
536 |
+
)
|
537 |
+
|
538 |
# # Submit
|
539 |
generate.click(
|
540 |
+
inference_wrapper,
|
541 |
[
|
542 |
+
refined_text,
|
543 |
enable_reference_audio,
|
544 |
reference_audio,
|
545 |
reference_text,
|
|
|
548 |
top_p,
|
549 |
repetition_penalty,
|
550 |
temperature,
|
551 |
+
batch_infer_num,
|
552 |
+
if_load_asr_model,
|
553 |
],
|
554 |
+
[stream_audio, *global_audio_list, *global_error_list],
|
555 |
concurrency_limit=1,
|
556 |
)
|
557 |
|
558 |
+
generate_stream.click(
|
559 |
+
inference_stream,
|
560 |
+
[
|
561 |
+
refined_text,
|
562 |
+
enable_reference_audio,
|
563 |
+
reference_audio,
|
564 |
+
reference_text,
|
565 |
+
max_new_tokens,
|
566 |
+
chunk_length,
|
567 |
+
top_p,
|
568 |
+
repetition_penalty,
|
569 |
+
temperature,
|
570 |
+
],
|
571 |
+
[stream_audio, global_audio_list[0], global_error_list[0]],
|
572 |
+
concurrency_limit=10,
|
573 |
+
)
|
574 |
return app
|
575 |
|
576 |
|
|
|
579 |
parser.add_argument(
|
580 |
"--llama-checkpoint-path",
|
581 |
type=Path,
|
582 |
+
default="checkpoints/fish-speech-1.2-sft",
|
583 |
)
|
584 |
parser.add_argument(
|
585 |
+
"--decoder-checkpoint-path",
|
|
|
|
|
|
|
586 |
type=Path,
|
587 |
+
default="checkpoints/fish-speech-1.2-sft/firefly-gan-vq-fsq-4x1024-42hz-generator.pth",
|
588 |
)
|
589 |
+
parser.add_argument("--decoder-config-name", type=str, default="firefly_gan_vq")
|
|
|
590 |
parser.add_argument("--device", type=str, default="cuda")
|
591 |
parser.add_argument("--half", action="store_true")
|
|
|
592 |
parser.add_argument("--compile", action="store_true")
|
593 |
parser.add_argument("--max-gradio-length", type=int, default=0)
|
594 |
+
parser.add_argument("--theme", type=str, default="light")
|
595 |
|
596 |
return parser.parse_args()
|
597 |
|
598 |
|
599 |
if __name__ == "__main__":
|
600 |
args = parse_args()
|
|
|
601 |
args.precision = torch.half if args.half else torch.bfloat16
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
602 |
|
603 |
logger.info("Loading Llama model...")
|
604 |
llama_queue = launch_thread_safe_queue(
|
|
|
605 |
checkpoint_path=args.llama_checkpoint_path,
|
606 |
device=args.device,
|
607 |
precision=args.precision,
|
|
|
608 |
compile=args.compile,
|
609 |
)
|
|
|
610 |
logger.info("Llama model loaded, loading VQ-GAN model...")
|
611 |
|
612 |
+
decoder_model = load_decoder_model(
|
613 |
+
config_name=args.decoder_config_name,
|
614 |
+
checkpoint_path=args.decoder_checkpoint_path,
|
615 |
device=args.device,
|
616 |
)
|
617 |
|
618 |
+
logger.info("Decoder model loaded, warming up...")
|
619 |
|
620 |
# Dry run to check if the model is loaded correctly and avoid the first-time latency
|
621 |
+
list(
|
622 |
+
inference(
|
623 |
+
text="Hello, world!",
|
624 |
+
enable_reference_audio=False,
|
625 |
+
reference_audio=None,
|
626 |
+
reference_text="",
|
627 |
+
max_new_tokens=0,
|
628 |
+
chunk_length=100,
|
629 |
+
top_p=0.7,
|
630 |
+
repetition_penalty=1.2,
|
631 |
+
temperature=0.7,
|
632 |
+
)
|
633 |
)
|
634 |
|
635 |
logger.info("Warming up done, launching the web UI...")
|
636 |
|
637 |
app = build_app()
|
638 |
+
app.launch(show_api=True)
|