Files changed (1) hide show
  1. app.py +48 -57
app.py CHANGED
@@ -1,23 +1,26 @@
 
1
  import re
 
 
2
  import gradio as gr
3
  import numpy as np
4
- import os
5
- import io
6
- import wave
7
- import threading
8
- import subprocess
9
- import sys
10
- import time
11
 
12
- from huggingface_hub import snapshot_download
13
- from tools.fish_e2e import FishE2EAgent, FishE2EEventType
14
- from tools.schema import ServeMessage, ServeTextPart, ServeVQPart
 
 
 
 
 
 
 
 
 
 
 
 
15
 
16
- # Download Weights
17
- os.makedirs("checkpoints", exist_ok=True)
18
- snapshot_download(repo_id="fishaudio/fish-speech-1.4", local_dir="./checkpoints/fish-speech-1.4")
19
- snapshot_download(repo_id="fishaudio/fish-agent-v0.1-3b", local_dir="./checkpoints/fish-agent-v0.1-3b")
20
- SYSTEM_PROMPT = 'You are a voice assistant created by Fish Audio, offering end-to-end voice interaction for a seamless user experience. You are required to first transcribe the user\'s speech, then answer it in the following format: "Question: [USER_SPEECH]\n\nResponse: [YOUR_RESPONSE]\n"。You are required to use the following voice in this conversation.'
21
 
22
  class ChatState:
23
  def __init__(self):
@@ -54,17 +57,6 @@ class ChatState:
54
  def clear_fn():
55
  return [], ChatState(), None, None, None
56
 
57
- def wav_chunk_header(sample_rate=44100, bit_depth=16, channels=1):
58
- buffer = io.BytesIO()
59
-
60
- with wave.open(buffer, "wb") as wav_file:
61
- wav_file.setnchannels(channels)
62
- wav_file.setsampwidth(bit_depth // 8)
63
- wav_file.setframerate(sample_rate)
64
-
65
- wav_header_bytes = buffer.getvalue()
66
- buffer.close()
67
- return wav_header_bytes
68
 
69
  async def process_audio_input(
70
  sys_audio_input, sys_text_input, audio_input, state: ChatState, text_input: str
@@ -117,16 +109,16 @@ async def process_audio_input(
117
  ):
118
  if event.type == FishE2EEventType.USER_CODES:
119
  append_to_chat_ctx(ServeVQPart(codes=event.vq_codes), role="user")
120
-
121
  elif event.type == FishE2EEventType.SPEECH_SEGMENT:
 
 
122
  append_to_chat_ctx(ServeVQPart(codes=event.vq_codes))
123
- yield state.get_history(), wav_chunk_header() + event.frame.data, None, None
124
-
125
  elif event.type == FishE2EEventType.TEXT_SEGMENT:
126
  append_to_chat_ctx(ServeTextPart(text=event.text))
127
- yield state.get_history(), None, None, None
128
 
129
- yield state.get_history(), None, None, None
130
 
131
 
132
  async def process_text_input(
@@ -153,16 +145,28 @@ def create_demo():
153
  type="messages",
154
  )
155
 
 
 
 
 
 
 
 
 
 
 
 
 
156
  notes = gr.Markdown(
157
  """
158
- # Fish Agent
159
- 1. This demo is the Fish Audio self-developed end-to-end language model Fish Agent 3B version.
160
- 2. You can find the code and weights in our official repository, but all related content is released under the CC BY-NC-SA 4.0 license.
161
- 3. The demo is an early beta version, and inference speed is yet to be optimized.
162
- # Features
163
- 1. This model automatically integrates ASR and TTS components, requiring no external models, making it truly end-to-end rather than a three-stage process (ASR+LLM+TTS).
164
- 2. The model can use reference audio to control speaking voice.
165
- 3. It can generate audio with strong emotions and prosody.
166
  """
167
  )
168
 
@@ -175,20 +179,18 @@ def create_demo():
175
  )
176
  sys_text_input = gr.Textbox(
177
  label="What is your assistant's role?",
178
- value=SYSTEM_PROMPT,
179
  type="text",
180
  )
181
  audio_input = gr.Audio(
182
  sources=["microphone"], type="numpy", label="Speak your message"
183
  )
184
 
185
- text_input = gr.Textbox(label="Or type your message", type="text",value="Can you give a brief introduction of yourself?")
186
 
187
  output_audio = gr.Audio(
188
- label="Assistant's Voice",
189
- streaming=True,
190
- autoplay=True,
191
- interactive=False,
192
  )
193
 
194
  send_button = gr.Button("Send", variant="primary")
@@ -224,18 +226,7 @@ def create_demo():
224
 
225
  return demo
226
 
227
- def run_api():
228
- subprocess.run([sys.executable, "-m", "tools.api"])
229
 
230
  if __name__ == "__main__":
231
-
232
- # 创建并启动 API 线程
233
- api_thread = threading.Thread(target=run_api, daemon=True)
234
- api_thread.start()
235
-
236
- # 给 API 一些时间启动
237
- time.sleep(90)
238
-
239
- # 创建并启动 Gradio demo
240
  demo = create_demo()
241
- demo.launch(share=True)
 
1
+ import io
2
  import re
3
+ import wave
4
+
5
  import gradio as gr
6
  import numpy as np
 
 
 
 
 
 
 
7
 
8
+ from .fish_e2e import FishE2EAgent, FishE2EEventType
9
+ from .schema import ServeMessage, ServeTextPart, ServeVQPart
10
+
11
+
12
+ def wav_chunk_header(sample_rate=44100, bit_depth=16, channels=1):
13
+ buffer = io.BytesIO()
14
+
15
+ with wave.open(buffer, "wb") as wav_file:
16
+ wav_file.setnchannels(channels)
17
+ wav_file.setsampwidth(bit_depth // 8)
18
+ wav_file.setframerate(sample_rate)
19
+
20
+ wav_header_bytes = buffer.getvalue()
21
+ buffer.close()
22
+ return wav_header_bytes
23
 
 
 
 
 
 
24
 
25
  class ChatState:
26
  def __init__(self):
 
57
  def clear_fn():
58
  return [], ChatState(), None, None, None
59
 
 
 
 
 
 
 
 
 
 
 
 
60
 
61
  async def process_audio_input(
62
  sys_audio_input, sys_text_input, audio_input, state: ChatState, text_input: str
 
109
  ):
110
  if event.type == FishE2EEventType.USER_CODES:
111
  append_to_chat_ctx(ServeVQPart(codes=event.vq_codes), role="user")
 
112
  elif event.type == FishE2EEventType.SPEECH_SEGMENT:
113
+ np_audio = np.frombuffer(event.frame.data, dtype=np.int16)
114
+ result_audio += np_audio
115
  append_to_chat_ctx(ServeVQPart(codes=event.vq_codes))
116
+ yield state.get_history(), (44100, result_audio), None, None
 
117
  elif event.type == FishE2EEventType.TEXT_SEGMENT:
118
  append_to_chat_ctx(ServeTextPart(text=event.text))
119
+ yield state.get_history(), (44100, result_audio), None, None
120
 
121
+ yield state.get_history(), (44100, result_audio), None, None
122
 
123
 
124
  async def process_text_input(
 
145
  type="messages",
146
  )
147
 
148
+ # notes = gr.Markdown(
149
+ # """
150
+ # # Fish Agent
151
+ # 1. 此Demo为Fish Audio自研端到端语言模型Fish Agent 3B版本.
152
+ # 2. 你可以在我们的官方仓库找到代码以及权重,但是相关内容全部基于 CC BY-NC-SA 4.0 许可证发布.
153
+ # 3. Demo为早期灰度测试版本,推理速度尚待优化.
154
+ # # 特色
155
+ # 1. 该模型自动集成ASR与TTS部分,不需要外挂其它模型,即真正的端到端,而非三段式(ASR+LLM+TTS).
156
+ # 2. 模型可以使用reference audio控制说话音色.
157
+ # 3. 可以生成具有较强情感与韵律的音频.
158
+ # """
159
+ # )
160
  notes = gr.Markdown(
161
  """
162
+ # Fish Agent
163
+ 1. This demo is Fish Audio's self-researh end-to-end language model, Fish Agent version 3B.
164
+ 2. You can find the code and weights in our official repo in [gitub](https://github.com/fishaudio/fish-speech) and [hugging face](https://huggingface.co/fishaudio/fish-agent-v0.1-3b), but the content is released under a CC BY-NC-SA 4.0 licence.
165
+ 3. The demo is an early alpha test version, the inference speed needs to be optimised.
166
+ # Features
167
+ 1. The model automatically integrates ASR and TTS parts, no need to plug-in other models, i.e., true end-to-end, not three-stage (ASR+LLM+TTS).
168
+ 2. The model can use reference audio to control the speech timbre.
169
+ 3. The model can generate speech with strong emotion.
170
  """
171
  )
172
 
 
179
  )
180
  sys_text_input = gr.Textbox(
181
  label="What is your assistant's role?",
182
+ value="You are a voice assistant created by Fish Audio, offering end-to-end voice interaction for a seamless user experience. You are required to first transcribe the user's speech, then answer it in the following format: 'Question: [USER_SPEECH]\n\nAnswer: [YOUR_RESPONSE]\n'. You are required to use the following voice in this conversation.",
183
  type="text",
184
  )
185
  audio_input = gr.Audio(
186
  sources=["microphone"], type="numpy", label="Speak your message"
187
  )
188
 
189
+ text_input = gr.Textbox(label="Or type your message", type="text")
190
 
191
  output_audio = gr.Audio(
192
+ label="Assistant's Voice",
193
+ type="numpy",
 
 
194
  )
195
 
196
  send_button = gr.Button("Send", variant="primary")
 
226
 
227
  return demo
228
 
 
 
229
 
230
  if __name__ == "__main__":
 
 
 
 
 
 
 
 
 
231
  demo = create_demo()
232
+ demo.launch(server_name="127.0.0.1", server_port=7860, share=True)