|
import glob |
|
import json |
|
import math |
|
import os |
|
from dataclasses import dataclass |
|
|
|
import dateutil |
|
import numpy as np |
|
|
|
from src.display.formatting import make_clickable_model |
|
from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, WeightType |
|
from src.submission.check_validity import is_model_on_hub |
|
|
|
task_benchmarks = {task.value.benchmark for task in Tasks} |
|
|
|
@dataclass |
|
class EvalResult: |
|
"""Represents one full evaluation. Built from a combination of the result and request file for a given run. |
|
""" |
|
eval_name: str |
|
full_model: str |
|
org: str |
|
model: str |
|
revision: str |
|
results: dict |
|
precision: Precision = Precision.Unknown |
|
model_type: ModelType = ModelType.Unknown |
|
weight_type: WeightType = WeightType.Original |
|
architecture: str = "Unknown" |
|
license: str = "?" |
|
likes: int = 0 |
|
num_params: int = 0 |
|
date: str = "" |
|
still_on_hub: bool = False |
|
|
|
@classmethod |
|
def init_from_json_file(self, json_filepath): |
|
"""Inits the result from the specific model result file""" |
|
with open(json_filepath) as fp: |
|
print(json_filepath) |
|
data = json.load(fp) |
|
|
|
config = data.get("config") |
|
|
|
precision = Precision.from_str(config.get("model_dtype")) |
|
|
|
|
|
model_type = ModelType.from_str(config.get("model_type")) |
|
|
|
|
|
org_and_model = config.get("model_name", config.get("model_args", None)) |
|
org_and_model = org_and_model.split("/", 1) |
|
|
|
if len(org_and_model) == 1: |
|
org = None |
|
model = org_and_model[0] |
|
result_key = f"{model}_{precision.value.name}" |
|
else: |
|
org = org_and_model[0] |
|
model = org_and_model[1] |
|
result_key = f"{org}_{model}_{precision.value.name}" |
|
full_model = "/".join(org_and_model) |
|
|
|
still_on_hub, _, model_config = is_model_on_hub( |
|
full_model, config.get("model_sha", "main"), trust_remote_code=True, test_tokenizer=False |
|
) |
|
architecture = "?" |
|
if model_config is not None: |
|
architectures = getattr(model_config, "architectures", None) |
|
if architectures: |
|
architecture = ";".join(architectures) |
|
|
|
|
|
results = {} |
|
for task in Tasks: |
|
task = task.value |
|
|
|
|
|
accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if task.benchmark == k]) |
|
if accs.size == 0 or any([acc is None for acc in accs]): |
|
continue |
|
|
|
mean_acc = np.mean(accs) * 100.0 |
|
results[task.benchmark] = mean_acc |
|
|
|
|
|
missing_benchmarks = task_benchmarks - results.keys() |
|
if missing_benchmarks: |
|
print(f"(Missing results) Model {model} is missing {', '.join(missing_benchmarks)} from result files") |
|
for benchmark in missing_benchmarks: |
|
results[benchmark] = "missing" |
|
|
|
|
|
|
|
return self( |
|
eval_name=result_key, |
|
full_model=full_model, |
|
org=org, |
|
model=model, |
|
results=results, |
|
precision=precision, |
|
revision= config.get("model_sha", ""), |
|
still_on_hub=still_on_hub, |
|
architecture=architecture, |
|
model_type=model_type |
|
) |
|
|
|
|
|
def update_with_request_file(self, requests_path): |
|
"""Finds the relevant request file for the current model and updates info with it""" |
|
request_file = get_request_file_for_model(requests_path, self.full_model, self.precision.value.name) |
|
try: |
|
with open(request_file, "r") as f: |
|
request = json.load(f) |
|
self.model_type = ModelType.from_str(request.get("model_type", "")) |
|
self.weight_type = WeightType[request.get("weight_type", "Original")] |
|
self.license = request.get("license", "?") |
|
self.likes = request.get("likes", 0) |
|
self.num_params = request.get("params", 0) |
|
self.date = request.get("submitted_time", "") |
|
except Exception: |
|
print(f"Could not find request file for {self.org}/{self.model} with precision {self.precision.value.name}") |
|
|
|
def to_dict(self): |
|
"""Converts the Eval Result to a dict compatible with our dataframe display""" |
|
|
|
|
|
category_averages = { |
|
"average_IE": [], |
|
"average_TA": [], |
|
"average_QA": [], |
|
"average_TG": [], |
|
"average_RM": [], |
|
"average_FO": [], |
|
"average_DM": [], |
|
"average_Spanish": [] |
|
} |
|
|
|
|
|
for task in Tasks: |
|
score = self.results.get(task.value.benchmark) |
|
if score is not None: |
|
|
|
if task.value.category == "Information Extraction (IE)": |
|
category_averages["average_IE"].append(score) |
|
elif task.value.category == "Textual Analysis (TA)": |
|
category_averages["average_TA"].append(score) |
|
elif task.value.category == "Question Answering (QA)": |
|
category_averages["average_QA"].append(score) |
|
elif task.value.category == "Text Generation (TG)": |
|
category_averages["average_TG"].append(score) |
|
elif task.value.category == "Risk Management (RM)": |
|
if score == "missing": |
|
category_averages["average_RM"].append(score) |
|
else: |
|
category_averages["average_RM"].append((score + 100) / 2) |
|
elif task.value.category == "Forecasting (FO)": |
|
category_averages["average_FO"].append(score) |
|
elif task.value.category == "Decision-Making (DM)": |
|
if task.value.benchmark == "FinTrade" and score != "missing": |
|
category_averages["average_DM"].append((score + 300)/6) |
|
else: |
|
category_averages["average_DM"].append(score) |
|
elif task.value.category == "Spanish": |
|
category_averages["average_Spanish"].append(score) |
|
|
|
|
|
data_dict = {} |
|
for category, scores in category_averages.items(): |
|
|
|
valid_scores = [score for score in scores if score != "missing"] |
|
if valid_scores: |
|
average = sum(valid_scores) / len(valid_scores) |
|
else: |
|
average = 0 |
|
data_dict[category] = average |
|
|
|
|
|
total_scores = [v for v in self.results.values() if v != "missing"] |
|
overall_average = sum(total_scores) / len(total_scores) if total_scores else 0 |
|
|
|
|
|
data_dict.update({ |
|
"eval_name": self.eval_name, |
|
AutoEvalColumn.precision.name: self.precision.value.name, |
|
AutoEvalColumn.model_type.name: self.model_type.value.name, |
|
AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol, |
|
AutoEvalColumn.weight_type.name: self.weight_type.value.name, |
|
AutoEvalColumn.architecture.name: self.architecture, |
|
AutoEvalColumn.model.name: make_clickable_model(self.full_model), |
|
AutoEvalColumn.revision.name: self.revision, |
|
AutoEvalColumn.average.name: overall_average, |
|
AutoEvalColumn.license.name: self.license, |
|
AutoEvalColumn.likes.name: self.likes, |
|
AutoEvalColumn.params.name: self.num_params, |
|
AutoEvalColumn.still_on_hub.name: self.still_on_hub, |
|
}) |
|
|
|
|
|
for task in Tasks: |
|
data_dict[task.value.col_name] = self.results.get(task.value.benchmark) |
|
|
|
return data_dict |
|
|
|
|
|
|
|
|
|
|
|
def get_request_file_for_model(requests_path, model_name, precision): |
|
"""Selects the correct request file for a given model. Only keeps runs tagged as FINISHED""" |
|
request_files = os.path.join( |
|
requests_path, |
|
f"{model_name}_eval_request_*.json", |
|
) |
|
request_files = glob.glob(request_files) |
|
|
|
|
|
request_file = "" |
|
request_files = sorted(request_files, reverse=True) |
|
for tmp_request_file in request_files: |
|
with open(tmp_request_file, "r") as f: |
|
req_content = json.load(f) |
|
if ( |
|
req_content["status"] in ["FINISHED"] |
|
and req_content["precision"] == precision.split(".")[-1] |
|
): |
|
request_file = tmp_request_file |
|
return request_file |
|
|
|
|
|
def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResult]: |
|
"""From the path of the results folder root, extract all needed info for results""" |
|
model_result_filepaths = [] |
|
|
|
for root, _, files in os.walk(results_path): |
|
|
|
if len(files) == 0 or any([not f.endswith(".json") for f in files]): |
|
continue |
|
|
|
|
|
try: |
|
files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7]) |
|
except dateutil.parser._parser.ParserError: |
|
files = [files[-1]] |
|
|
|
for file in files: |
|
model_result_filepaths.append(os.path.join(root, file)) |
|
|
|
print(f"Found {len(model_result_filepaths)} JSON files to process.") |
|
|
|
eval_results = {} |
|
for model_result_filepath in model_result_filepaths: |
|
|
|
eval_result = EvalResult.init_from_json_file(model_result_filepath) |
|
eval_result.update_with_request_file(requests_path) |
|
|
|
|
|
eval_name = eval_result.eval_name |
|
if eval_name in eval_results.keys(): |
|
eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None}) |
|
else: |
|
eval_results[eval_name] = eval_result |
|
|
|
results = [] |
|
for v in eval_results.values(): |
|
try: |
|
v.to_dict() |
|
results.append(v) |
|
except KeyError: |
|
continue |
|
|
|
print(f"Successfully loaded {len(results)} models.") |
|
return results |
|
|