File size: 10,984 Bytes
df66f6e
2a5f9fb
 
df66f6e
2a5f9fb
 
 
 
 
 
9d22eee
2a5f9fb
 
e9d718d
2a5f9fb
 
 
c1b8a96
 
3dfaf22
 
 
2a5f9fb
3dfaf22
2a5f9fb
9d22eee
3dfaf22
9d22eee
943f952
2a5f9fb
 
 
3dfaf22
2a5f9fb
 
 
 
3dfaf22
2a5f9fb
cfd9447
2a5f9fb
 
da9cc09
2a5f9fb
9d22eee
2a5f9fb
f2550e7
 
 
2a5f9fb
 
 
 
 
 
 
9d22eee
2a5f9fb
 
 
9d22eee
002172c
2a5f9fb
943f952
9d22eee
002172c
3dfaf22
 
 
 
 
2a5f9fb
 
 
 
 
 
943f952
 
2a5f9fb
 
 
 
 
 
e9d718d
 
 
 
ee62fba
 
 
e9d718d
da9cc09
2a5f9fb
 
002172c
2a5f9fb
 
 
3dfaf22
 
2a5f9fb
f2550e7
 
2a5f9fb
 
da9cc09
3dfaf22
 
9d22eee
2a5f9fb
 
 
 
9d22eee
2a5f9fb
 
 
b1a1395
2a5f9fb
1ffc326
2a5f9fb
 
3dfaf22
91f5d94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cfd9447
 
 
 
91f5d94
 
 
cfd9447
3c28d4f
cfd9447
 
91f5d94
 
 
 
 
 
ee62fba
 
 
 
 
 
91f5d94
 
 
ee62fba
91f5d94
 
 
 
2a5f9fb
9d22eee
2a5f9fb
 
9d22eee
3dfaf22
2a5f9fb
 
91f5d94
2a5f9fb
 
 
 
91f5d94
2a5f9fb
91f5d94
2a5f9fb
91f5d94
2a5f9fb
 
 
 
91f5d94
 
 
3dfaf22
 
2a5f9fb
3dfaf22
2a5f9fb
 
 
 
 
 
 
 
 
 
 
9d22eee
2a5f9fb
 
 
 
 
 
3dfaf22
 
 
2a5f9fb
 
 
 
 
 
 
 
 
 
 
 
 
3dfaf22
2a5f9fb
da9cc09
 
2a5f9fb
3dfaf22
2a5f9fb
3dfaf22
 
2a5f9fb
 
 
 
 
 
 
 
 
 
 
b1a1395
 
df66f6e
2a5f9fb
 
da9cc09
2a5f9fb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
import glob
import json
import math
import os
from dataclasses import dataclass

import dateutil
import numpy as np

from src.display.formatting import make_clickable_model
from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, WeightType
from src.submission.check_validity import is_model_on_hub

task_benchmarks = {task.value.benchmark for task in Tasks}

@dataclass
class EvalResult:
    """Represents one full evaluation. Built from a combination of the result and request file for a given run.
    """
    eval_name: str # org_model_precision (uid)
    full_model: str # org/model (path on hub)
    org: str 
    model: str
    revision: str # commit hash, "" if main
    results: dict
    precision: Precision = Precision.Unknown
    model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
    weight_type: WeightType = WeightType.Original # Original or Adapter
    architecture: str = "Unknown" 
    license: str = "?"
    likes: int = 0
    num_params: int = 0
    date: str = "" # submission date of request file
    still_on_hub: bool = False

    @classmethod
    def init_from_json_file(self, json_filepath):
        """Inits the result from the specific model result file"""
        with open(json_filepath) as fp:
            print(json_filepath)
            data = json.load(fp)

        config = data.get("config")
        # Precision
        precision = Precision.from_str(config.get("model_dtype"))

        # ModelType
        model_type = ModelType.from_str(config.get("model_type"))

        # Get model and org
        org_and_model = config.get("model_name", config.get("model_args", None))
        org_and_model = org_and_model.split("/", 1)

        if len(org_and_model) == 1:
            org = None
            model = org_and_model[0]
            result_key = f"{model}_{precision.value.name}"
        else:
            org = org_and_model[0]
            model = org_and_model[1]
            result_key = f"{org}_{model}_{precision.value.name}"
        full_model = "/".join(org_and_model)

        still_on_hub, _, model_config = is_model_on_hub(
            full_model, config.get("model_sha", "main"), trust_remote_code=True, test_tokenizer=False
        )
        architecture = "?"
        if model_config is not None:
            architectures = getattr(model_config, "architectures", None)
            if architectures:
                architecture = ";".join(architectures)

        # Extract results available in this file (some results are split in several files)
        results = {}
        for task in Tasks:
            task = task.value

            # We average all scores of a given metric (not all metrics are present in all files)
            accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if task.benchmark == k])
            if accs.size == 0 or any([acc is None for acc in accs]):
                continue

            mean_acc = np.mean(accs) * 100.0
            results[task.benchmark] = mean_acc

        # Print missing benchmarks if any
        missing_benchmarks = task_benchmarks - results.keys()
        if missing_benchmarks:
            print(f"(Missing results) Model {model} is missing {', '.join(missing_benchmarks)} from result files")
            for benchmark in missing_benchmarks:
                results[benchmark] = "missing"



        return self(
            eval_name=result_key,
            full_model=full_model,
            org=org,
            model=model,
            results=results,
            precision=precision,  
            revision= config.get("model_sha", ""),
            still_on_hub=still_on_hub,
            architecture=architecture,
            model_type=model_type
        )


    def update_with_request_file(self, requests_path):
        """Finds the relevant request file for the current model and updates info with it"""
        request_file = get_request_file_for_model(requests_path, self.full_model, self.precision.value.name)
        try:
            with open(request_file, "r") as f:
                request = json.load(f)
            self.model_type = ModelType.from_str(request.get("model_type", ""))
            self.weight_type = WeightType[request.get("weight_type", "Original")]
            self.license = request.get("license", "?")
            self.likes = request.get("likes", 0)
            self.num_params = request.get("params", 0)
            self.date = request.get("submitted_time", "")
        except Exception:
            print(f"Could not find request file for {self.org}/{self.model} with precision {self.precision.value.name}")

    def to_dict(self):
        """Converts the Eval Result to a dict compatible with our dataframe display"""

        # Initialize category averages
        category_averages = {
            "average_IE": [],
            "average_TA": [],
            "average_QA": [],
            "average_TG": [],
            "average_RM": [],
            "average_FO": [],
            "average_DM": [],
            "average_Spanish": []
        }

        # Calculate averages for each task
        for task in Tasks:
            score = self.results.get(task.value.benchmark)
            if score is not None:
                # Append score to the appropriate category
                if task.value.category == "Information Extraction (IE)":
                    category_averages["average_IE"].append(score)
                elif task.value.category == "Textual Analysis (TA)":
                    category_averages["average_TA"].append(score)
                elif task.value.category == "Question Answering (QA)":
                    category_averages["average_QA"].append(score)
                elif task.value.category == "Text Generation (TG)":
                    category_averages["average_TG"].append(score)
                elif task.value.category == "Risk Management (RM)":
                    if score == "missing":
                        category_averages["average_RM"].append(score)
                    else:
                        category_averages["average_RM"].append((score + 100) / 2)
                elif task.value.category == "Forecasting (FO)":
                    category_averages["average_FO"].append(score)
                elif task.value.category == "Decision-Making (DM)":
                    if task.value.benchmark == "FinTrade" and score != "missing":
                        category_averages["average_DM"].append((score + 300)/6)
                    else:
                        category_averages["average_DM"].append(score)
                elif task.value.category == "Spanish":
                    category_averages["average_Spanish"].append(score)

        # Calculate the mean for each category and add to data_dict
        data_dict = {}
        for category, scores in category_averages.items():
            # Calculate the average if there are valid scores, otherwise set to 0
            valid_scores = [score for score in scores if score != "missing"]
            if valid_scores:
                average = sum(valid_scores) / len(valid_scores)
            else:
                average = 0
            data_dict[category] = average

        # Overall average
        total_scores = [v for v in self.results.values() if v != "missing"]
        overall_average = sum(total_scores) / len(total_scores) if total_scores else 0

        # Add other columns
        data_dict.update({
            "eval_name": self.eval_name,  # not a column, just a save name,
            AutoEvalColumn.precision.name: self.precision.value.name,
            AutoEvalColumn.model_type.name: self.model_type.value.name,
            AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
            AutoEvalColumn.weight_type.name: self.weight_type.value.name,
            AutoEvalColumn.architecture.name: self.architecture,
            AutoEvalColumn.model.name: make_clickable_model(self.full_model),
            AutoEvalColumn.revision.name: self.revision,
            AutoEvalColumn.average.name: overall_average,
            AutoEvalColumn.license.name: self.license,
            AutoEvalColumn.likes.name: self.likes,
            AutoEvalColumn.params.name: self.num_params,
            AutoEvalColumn.still_on_hub.name: self.still_on_hub,
        })

        # Add task results to the data dictionary
        for task in Tasks:
            data_dict[task.value.col_name] = self.results.get(task.value.benchmark)

        return data_dict





def get_request_file_for_model(requests_path, model_name, precision):
    """Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
    request_files = os.path.join(
        requests_path,
        f"{model_name}_eval_request_*.json",
    )
    request_files = glob.glob(request_files)

    # Select correct request file (precision)
    request_file = ""
    request_files = sorted(request_files, reverse=True)
    for tmp_request_file in request_files:
        with open(tmp_request_file, "r") as f:
            req_content = json.load(f)
            if (
                req_content["status"] in ["FINISHED"]
                and req_content["precision"] == precision.split(".")[-1]
            ):
                request_file = tmp_request_file
    return request_file


def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResult]:
    """From the path of the results folder root, extract all needed info for results"""
    model_result_filepaths = []

    for root, _, files in os.walk(results_path):
        # We should only have json files in model results
        if len(files) == 0 or any([not f.endswith(".json") for f in files]):
            continue

        # Sort the files by date
        try:
            files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7])
        except dateutil.parser._parser.ParserError:
            files = [files[-1]]

        for file in files:
            model_result_filepaths.append(os.path.join(root, file))

    print(f"Found {len(model_result_filepaths)} JSON files to process.")

    eval_results = {}
    for model_result_filepath in model_result_filepaths:
        # Creation of result
        eval_result = EvalResult.init_from_json_file(model_result_filepath)
        eval_result.update_with_request_file(requests_path)

        # Store results of same eval together
        eval_name = eval_result.eval_name
        if eval_name in eval_results.keys():
            eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
        else:
            eval_results[eval_name] = eval_result

    results = []
    for v in eval_results.values():
        try:
            v.to_dict() # we test if the dict version is complete
            results.append(v)
        except KeyError:  # not all eval values present
            continue

    print(f"Successfully loaded {len(results)} models.")
    return results