File size: 10,984 Bytes
df66f6e 2a5f9fb df66f6e 2a5f9fb 9d22eee 2a5f9fb e9d718d 2a5f9fb c1b8a96 3dfaf22 2a5f9fb 3dfaf22 2a5f9fb 9d22eee 3dfaf22 9d22eee 943f952 2a5f9fb 3dfaf22 2a5f9fb 3dfaf22 2a5f9fb cfd9447 2a5f9fb da9cc09 2a5f9fb 9d22eee 2a5f9fb f2550e7 2a5f9fb 9d22eee 2a5f9fb 9d22eee 002172c 2a5f9fb 943f952 9d22eee 002172c 3dfaf22 2a5f9fb 943f952 2a5f9fb e9d718d ee62fba e9d718d da9cc09 2a5f9fb 002172c 2a5f9fb 3dfaf22 2a5f9fb f2550e7 2a5f9fb da9cc09 3dfaf22 9d22eee 2a5f9fb 9d22eee 2a5f9fb b1a1395 2a5f9fb 1ffc326 2a5f9fb 3dfaf22 91f5d94 cfd9447 91f5d94 cfd9447 3c28d4f cfd9447 91f5d94 ee62fba 91f5d94 ee62fba 91f5d94 2a5f9fb 9d22eee 2a5f9fb 9d22eee 3dfaf22 2a5f9fb 91f5d94 2a5f9fb 91f5d94 2a5f9fb 91f5d94 2a5f9fb 91f5d94 2a5f9fb 91f5d94 3dfaf22 2a5f9fb 3dfaf22 2a5f9fb 9d22eee 2a5f9fb 3dfaf22 2a5f9fb 3dfaf22 2a5f9fb da9cc09 2a5f9fb 3dfaf22 2a5f9fb 3dfaf22 2a5f9fb b1a1395 df66f6e 2a5f9fb da9cc09 2a5f9fb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
import glob
import json
import math
import os
from dataclasses import dataclass
import dateutil
import numpy as np
from src.display.formatting import make_clickable_model
from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, WeightType
from src.submission.check_validity import is_model_on_hub
task_benchmarks = {task.value.benchmark for task in Tasks}
@dataclass
class EvalResult:
"""Represents one full evaluation. Built from a combination of the result and request file for a given run.
"""
eval_name: str # org_model_precision (uid)
full_model: str # org/model (path on hub)
org: str
model: str
revision: str # commit hash, "" if main
results: dict
precision: Precision = Precision.Unknown
model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
weight_type: WeightType = WeightType.Original # Original or Adapter
architecture: str = "Unknown"
license: str = "?"
likes: int = 0
num_params: int = 0
date: str = "" # submission date of request file
still_on_hub: bool = False
@classmethod
def init_from_json_file(self, json_filepath):
"""Inits the result from the specific model result file"""
with open(json_filepath) as fp:
print(json_filepath)
data = json.load(fp)
config = data.get("config")
# Precision
precision = Precision.from_str(config.get("model_dtype"))
# ModelType
model_type = ModelType.from_str(config.get("model_type"))
# Get model and org
org_and_model = config.get("model_name", config.get("model_args", None))
org_and_model = org_and_model.split("/", 1)
if len(org_and_model) == 1:
org = None
model = org_and_model[0]
result_key = f"{model}_{precision.value.name}"
else:
org = org_and_model[0]
model = org_and_model[1]
result_key = f"{org}_{model}_{precision.value.name}"
full_model = "/".join(org_and_model)
still_on_hub, _, model_config = is_model_on_hub(
full_model, config.get("model_sha", "main"), trust_remote_code=True, test_tokenizer=False
)
architecture = "?"
if model_config is not None:
architectures = getattr(model_config, "architectures", None)
if architectures:
architecture = ";".join(architectures)
# Extract results available in this file (some results are split in several files)
results = {}
for task in Tasks:
task = task.value
# We average all scores of a given metric (not all metrics are present in all files)
accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if task.benchmark == k])
if accs.size == 0 or any([acc is None for acc in accs]):
continue
mean_acc = np.mean(accs) * 100.0
results[task.benchmark] = mean_acc
# Print missing benchmarks if any
missing_benchmarks = task_benchmarks - results.keys()
if missing_benchmarks:
print(f"(Missing results) Model {model} is missing {', '.join(missing_benchmarks)} from result files")
for benchmark in missing_benchmarks:
results[benchmark] = "missing"
return self(
eval_name=result_key,
full_model=full_model,
org=org,
model=model,
results=results,
precision=precision,
revision= config.get("model_sha", ""),
still_on_hub=still_on_hub,
architecture=architecture,
model_type=model_type
)
def update_with_request_file(self, requests_path):
"""Finds the relevant request file for the current model and updates info with it"""
request_file = get_request_file_for_model(requests_path, self.full_model, self.precision.value.name)
try:
with open(request_file, "r") as f:
request = json.load(f)
self.model_type = ModelType.from_str(request.get("model_type", ""))
self.weight_type = WeightType[request.get("weight_type", "Original")]
self.license = request.get("license", "?")
self.likes = request.get("likes", 0)
self.num_params = request.get("params", 0)
self.date = request.get("submitted_time", "")
except Exception:
print(f"Could not find request file for {self.org}/{self.model} with precision {self.precision.value.name}")
def to_dict(self):
"""Converts the Eval Result to a dict compatible with our dataframe display"""
# Initialize category averages
category_averages = {
"average_IE": [],
"average_TA": [],
"average_QA": [],
"average_TG": [],
"average_RM": [],
"average_FO": [],
"average_DM": [],
"average_Spanish": []
}
# Calculate averages for each task
for task in Tasks:
score = self.results.get(task.value.benchmark)
if score is not None:
# Append score to the appropriate category
if task.value.category == "Information Extraction (IE)":
category_averages["average_IE"].append(score)
elif task.value.category == "Textual Analysis (TA)":
category_averages["average_TA"].append(score)
elif task.value.category == "Question Answering (QA)":
category_averages["average_QA"].append(score)
elif task.value.category == "Text Generation (TG)":
category_averages["average_TG"].append(score)
elif task.value.category == "Risk Management (RM)":
if score == "missing":
category_averages["average_RM"].append(score)
else:
category_averages["average_RM"].append((score + 100) / 2)
elif task.value.category == "Forecasting (FO)":
category_averages["average_FO"].append(score)
elif task.value.category == "Decision-Making (DM)":
if task.value.benchmark == "FinTrade" and score != "missing":
category_averages["average_DM"].append((score + 300)/6)
else:
category_averages["average_DM"].append(score)
elif task.value.category == "Spanish":
category_averages["average_Spanish"].append(score)
# Calculate the mean for each category and add to data_dict
data_dict = {}
for category, scores in category_averages.items():
# Calculate the average if there are valid scores, otherwise set to 0
valid_scores = [score for score in scores if score != "missing"]
if valid_scores:
average = sum(valid_scores) / len(valid_scores)
else:
average = 0
data_dict[category] = average
# Overall average
total_scores = [v for v in self.results.values() if v != "missing"]
overall_average = sum(total_scores) / len(total_scores) if total_scores else 0
# Add other columns
data_dict.update({
"eval_name": self.eval_name, # not a column, just a save name,
AutoEvalColumn.precision.name: self.precision.value.name,
AutoEvalColumn.model_type.name: self.model_type.value.name,
AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
AutoEvalColumn.weight_type.name: self.weight_type.value.name,
AutoEvalColumn.architecture.name: self.architecture,
AutoEvalColumn.model.name: make_clickable_model(self.full_model),
AutoEvalColumn.revision.name: self.revision,
AutoEvalColumn.average.name: overall_average,
AutoEvalColumn.license.name: self.license,
AutoEvalColumn.likes.name: self.likes,
AutoEvalColumn.params.name: self.num_params,
AutoEvalColumn.still_on_hub.name: self.still_on_hub,
})
# Add task results to the data dictionary
for task in Tasks:
data_dict[task.value.col_name] = self.results.get(task.value.benchmark)
return data_dict
def get_request_file_for_model(requests_path, model_name, precision):
"""Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
request_files = os.path.join(
requests_path,
f"{model_name}_eval_request_*.json",
)
request_files = glob.glob(request_files)
# Select correct request file (precision)
request_file = ""
request_files = sorted(request_files, reverse=True)
for tmp_request_file in request_files:
with open(tmp_request_file, "r") as f:
req_content = json.load(f)
if (
req_content["status"] in ["FINISHED"]
and req_content["precision"] == precision.split(".")[-1]
):
request_file = tmp_request_file
return request_file
def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResult]:
"""From the path of the results folder root, extract all needed info for results"""
model_result_filepaths = []
for root, _, files in os.walk(results_path):
# We should only have json files in model results
if len(files) == 0 or any([not f.endswith(".json") for f in files]):
continue
# Sort the files by date
try:
files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7])
except dateutil.parser._parser.ParserError:
files = [files[-1]]
for file in files:
model_result_filepaths.append(os.path.join(root, file))
print(f"Found {len(model_result_filepaths)} JSON files to process.")
eval_results = {}
for model_result_filepath in model_result_filepaths:
# Creation of result
eval_result = EvalResult.init_from_json_file(model_result_filepath)
eval_result.update_with_request_file(requests_path)
# Store results of same eval together
eval_name = eval_result.eval_name
if eval_name in eval_results.keys():
eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
else:
eval_results[eval_name] = eval_result
results = []
for v in eval_results.values():
try:
v.to_dict() # we test if the dict version is complete
results.append(v)
except KeyError: # not all eval values present
continue
print(f"Successfully loaded {len(results)} models.")
return results
|