Clémentine commited on
Commit
c1b8a96
1 Parent(s): 910a08e
src/leaderboard/read_evals.py CHANGED
@@ -14,6 +14,8 @@ from src.submission.check_validity import is_model_on_hub
14
 
15
  @dataclass
16
  class EvalResult:
 
 
17
  eval_name: str # org_model_precision (uid)
18
  full_model: str # org/model (path on hub)
19
  org: str
 
14
 
15
  @dataclass
16
  class EvalResult:
17
+ """Represents one full evaluation. Built from a combination of the result and request file for a given run.
18
+ """
19
  eval_name: str # org_model_precision (uid)
20
  full_model: str # org/model (path on hub)
21
  org: str
src/populate.py CHANGED
@@ -9,6 +9,7 @@ from src.leaderboard.read_evals import get_raw_eval_results
9
 
10
 
11
  def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
 
12
  raw_data = get_raw_eval_results(results_path, requests_path)
13
  all_data_json = [v.to_dict() for v in raw_data]
14
 
@@ -22,6 +23,7 @@ def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchm
22
 
23
 
24
  def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
 
25
  entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")]
26
  all_evals = []
27
 
 
9
 
10
 
11
  def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
12
+ """Creates a dataframe from all the individual experiment results"""
13
  raw_data = get_raw_eval_results(results_path, requests_path)
14
  all_data_json = [v.to_dict() for v in raw_data]
15
 
 
23
 
24
 
25
  def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
26
+ """Creates the different dataframes for the evaluation queues requestes"""
27
  entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")]
28
  all_evals = []
29
 
src/submission/check_validity.py CHANGED
@@ -32,6 +32,7 @@ def check_model_card(repo_id: str) -> tuple[bool, str]:
32
  return True, ""
33
 
34
  def is_model_on_hub(model_name: str, revision: str, token: str = None, trust_remote_code=False, test_tokenizer=False) -> tuple[bool, str]:
 
35
  try:
36
  config = AutoConfig.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token)
37
  if test_tokenizer:
@@ -74,6 +75,7 @@ def get_model_arch(model_info: ModelInfo):
74
  return model_info.config.get("architectures", "Unknown")
75
 
76
  def already_submitted_models(requested_models_dir: str) -> set[str]:
 
77
  depth = 1
78
  file_names = []
79
  users_to_submission_dates = defaultdict(list)
 
32
  return True, ""
33
 
34
  def is_model_on_hub(model_name: str, revision: str, token: str = None, trust_remote_code=False, test_tokenizer=False) -> tuple[bool, str]:
35
+ """Checks if the model model_name is on the hub, and whether it (and its tokenizer) can be loaded with AutoClasses."""
36
  try:
37
  config = AutoConfig.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token)
38
  if test_tokenizer:
 
75
  return model_info.config.get("architectures", "Unknown")
76
 
77
  def already_submitted_models(requested_models_dir: str) -> set[str]:
78
+ """Gather a list of already submitted models to avoid duplicates"""
79
  depth = 1
80
  file_names = []
81
  users_to_submission_dates = defaultdict(list)