Spaces:
Runtime error
Runtime error
File size: 5,167 Bytes
f90ad24 0227006 f90ad24 0227006 2102b66 0227006 f90ad24 0227006 f90ad24 2102b66 f90ad24 2102b66 07bfeca ea4eff1 2102b66 07bfeca ea4eff1 2102b66 07bfeca ea4eff1 07bfeca f90ad24 2102b66 f90ad24 ea4eff1 f90ad24 2102b66 f90ad24 2102b66 b2c063a 2102b66 b2c063a 2102b66 f90ad24 2102b66 59c748f fcb01e3 a460f7a ffefe11 a460f7a 2102b66 f90ad24 2102b66 f90ad24 2102b66 f90ad24 2102b66 f90ad24 fcb01e3 f90ad24 fcb01e3 2102b66 f90ad24 fcb01e3 2102b66 fcb01e3 2102b66 f90ad24 2102b66 f90ad24 2102b66 f90ad24 2102b66 db6f218 2102b66 db6f218 2102b66 f90ad24 2102b66 f90ad24 2102b66 f90ad24 2102b66 db6f218 2102b66 f90ad24 8cb7546 7644705 8cb7546 7644705 8cb7546 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
import glob
import json
from dataclasses import dataclass
from typing import Dict, List, Tuple
import numpy as np
# clone / pull the lmeh eval data
METRICS = ["acc_norm", "acc_norm", "acc_norm", "mc2"]
BENCHMARKS = ["arc_challenge", "hellaswag", "hendrycks", "truthfulqa_mc"]
BENCH_TO_NAME = {
"arc_challenge": "ARC (25-shot) ⬆️",
"hellaswag": "HellaSwag (10-shot) ⬆️",
"hendrycks": "MMLU (5-shot) ⬆️",
"truthfulqa_mc": "TruthfulQA (0-shot) ⬆️",
}
def make_clickable_model(model_name):
LLAMAS = [
"huggingface/llama-7b",
"huggingface/llama-13b",
"huggingface/llama-30b",
"huggingface/llama-65b",
]
if model_name in LLAMAS:
model = model_name.split("/")[1]
return f'<a target="_blank" href="https://ai.facebook.com/blog/large-language-model-llama-meta-ai/" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model}</a>'
if model_name == "HuggingFaceH4/stable-vicuna-13b-2904":
link = "https://huggingface.co/" + "CarperAI/stable-vicuna-13b-delta"
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">stable-vicuna-13b</a>'
if model_name == "HuggingFaceH4/llama-7b-ift-alpaca":
link = "https://crfm.stanford.edu/2023/03/13/alpaca.html"
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">alpaca-13b</a>'
# remove user from model name
# model_name_show = ' '.join(model_name.split('/')[1:])
link = "https://huggingface.co/" + model_name
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
@dataclass
class EvalResult:
eval_name: str
org: str
model: str
revision: str
is_8bit: bool
results: dict
def to_dict(self):
if self.org is not None:
base_model = f"{self.org}/{self.model}"
else:
base_model = f"{self.model}"
data_dict = {}
data_dict["eval_name"] = self.eval_name
data_dict["8bit"] = self.is_8bit
data_dict["Model"] = make_clickable_model(base_model)
data_dict["model_name_for_query"] = base_model
data_dict["Revision"] = self.revision
data_dict["Average ⬆️"] = round(
sum([v for k, v in self.results.items()]) / 4.0, 1
)
for benchmark in BENCHMARKS:
if not benchmark in self.results.keys():
self.results[benchmark] = None
for k, v in BENCH_TO_NAME.items():
data_dict[v] = self.results[k]
return data_dict
def parse_eval_result(json_filepath: str) -> Tuple[str, dict]:
with open(json_filepath) as fp:
data = json.load(fp)
path_split = json_filepath.split("/")
org = None
model = path_split[-4]
is_8bit = path_split[-2] == "8bit"
revision = path_split[-3]
if len(path_split) == 7:
# handles gpt2 type models that don't have an org
result_key = f"{path_split[-4]}_{path_split[-3]}_{path_split[-2]}"
else:
result_key = (
f"{path_split[-5]}_{path_split[-4]}_{path_split[-3]}_{path_split[-2]}"
)
org = path_split[-5]
eval_result = None
for benchmark, metric in zip(BENCHMARKS, METRICS):
if benchmark in json_filepath:
accs = np.array([v[metric] for k, v in data["results"].items()])
mean_acc = round(np.mean(accs) * 100.0, 1)
eval_result = EvalResult(
result_key, org, model, revision, is_8bit, {benchmark: mean_acc}
)
return result_key, eval_result
def get_eval_results(is_public) -> List[EvalResult]:
json_filepaths = glob.glob(
"evals/eval_results/public/**/16bit/*.json", recursive=True
)
if not is_public:
json_filepaths += glob.glob(
"evals/eval_results/private/**/*.json", recursive=True
)
json_filepaths += glob.glob(
"evals/eval_results/private/**/*.json", recursive=True
)
json_filepaths += glob.glob(
"evals/eval_results/public/**/8bit/*.json", recursive=True
) # include the 8bit evals of public models
eval_results = {}
for json_filepath in json_filepaths:
result_key, eval_result = parse_eval_result(json_filepath)
if result_key in eval_results.keys():
eval_results[result_key].results.update(eval_result.results)
else:
eval_results[result_key] = eval_result
eval_results = [v for k, v in eval_results.items()]
return eval_results
def get_eval_results_dicts(is_public=True) -> List[Dict]:
eval_results = get_eval_results(is_public)
return [e.to_dict() for e in eval_results]
get_window_url_params = """
function(url_params) {
const params = new URLSearchParams(window.location.search);
url_params = Object.fromEntries(params);
return url_params;
}
"""
|