edbeeching
commited on
Commit
•
b2c063a
1
Parent(s):
59c748f
adds revision option
Browse files- .gitignore +2 -1
- app.py +23 -52
- utils.py +24 -16
.gitignore
CHANGED
@@ -1,2 +1,3 @@
|
|
1 |
evals/
|
2 |
-
venv/
|
|
|
|
1 |
evals/
|
2 |
+
venv/
|
3 |
+
__pycache__/
|
app.py
CHANGED
@@ -8,7 +8,7 @@ import json
|
|
8 |
from apscheduler.schedulers.background import BackgroundScheduler
|
9 |
import pandas as pd
|
10 |
import datetime
|
11 |
-
from utils import get_eval_results_dicts, make_clickable_model
|
12 |
|
13 |
# clone / pull the lmeh eval data
|
14 |
H4_TOKEN = os.environ.get("H4_TOKEN", None)
|
@@ -45,53 +45,16 @@ def load_results(model, benchmark, metric):
|
|
45 |
mean_acc = np.mean(accs)
|
46 |
return mean_acc, data["config"]["model_args"]
|
47 |
|
48 |
-
def get_n_params(base_model):
|
49 |
-
|
50 |
-
# config = AutoConfig.from_pretrained(model_name)
|
51 |
-
|
52 |
-
# # Retrieve the number of parameters from the configuration
|
53 |
-
# try:
|
54 |
-
# num_params = config.n_parameters
|
55 |
-
# except AttributeError:
|
56 |
-
# print(f"Error: The number of parameters is not available in the config for the model '{model_name}'.")
|
57 |
-
# return None
|
58 |
-
|
59 |
-
# return num_params
|
60 |
-
|
61 |
-
now = datetime.datetime.now()
|
62 |
-
time_string = now.strftime("%Y-%m-%d %H:%M:%S")
|
63 |
-
return time_string
|
64 |
|
65 |
-
COLS = ["eval_name",
|
66 |
-
TYPES = ["str",
|
67 |
|
68 |
-
EVAL_COLS = ["model",
|
69 |
-
EVAL_TYPES = ["markdown","str",
|
70 |
def get_leaderboard():
|
71 |
if repo:
|
72 |
print("pulling changes")
|
73 |
repo.git_pull()
|
74 |
-
# entries = [entry for entry in os.listdir("evals") if not (entry.startswith('.') or entry=="eval_requests" or entry=="evals")]
|
75 |
-
# model_directories = [entry for entry in entries if os.path.isdir(os.path.join("evals", entry))]
|
76 |
-
# all_data = []
|
77 |
-
# for model in model_directories:
|
78 |
-
# model_data = {"base_model": None, "eval_name": model}
|
79 |
-
|
80 |
-
# for benchmark, metric in zip(BENCHMARKS, METRICS):
|
81 |
-
# value, base_model = load_results(model, benchmark, metric)
|
82 |
-
# model_data[BENCH_TO_NAME[benchmark]] = round(value,3)
|
83 |
-
# if base_model is not None: # in case the last benchmark failed
|
84 |
-
# model_data["base_model"] = base_model
|
85 |
-
|
86 |
-
# model_data["total ⬆️"] = round(sum(model_data[benchmark] for benchmark in BENCH_TO_NAME.values()),3)
|
87 |
-
|
88 |
-
# if model_data["base_model"] is not None:
|
89 |
-
# model_data["base_model"] = make_clickable_model(model_data["base_model"])
|
90 |
-
|
91 |
-
# model_data["# params"] = get_n_params(model_data["base_model"])
|
92 |
-
|
93 |
-
# if model_data["base_model"] is not None:
|
94 |
-
# all_data.append(model_data)
|
95 |
|
96 |
all_data = get_eval_results_dicts()
|
97 |
dataframe = pd.DataFrame.from_records(all_data)
|
@@ -116,6 +79,7 @@ def get_eval_table():
|
|
116 |
|
117 |
data["# params"] = get_n_params(data["model"])
|
118 |
data["model"] = make_clickable_model(data["model"])
|
|
|
119 |
|
120 |
|
121 |
all_evals.append(data)
|
@@ -127,7 +91,7 @@ def get_eval_table():
|
|
127 |
with open(file_path) as fp:
|
128 |
data = json.load(fp)
|
129 |
|
130 |
-
data["# params"] = get_n_params(data["model"])
|
131 |
data["model"] = make_clickable_model(data["model"])
|
132 |
all_evals.append(data)
|
133 |
|
@@ -139,9 +103,9 @@ def get_eval_table():
|
|
139 |
leaderboard = get_leaderboard()
|
140 |
eval_queue = get_eval_table()
|
141 |
|
142 |
-
def is_model_on_hub(model_name) -> bool:
|
143 |
try:
|
144 |
-
config = AutoConfig.from_pretrained(model_name)
|
145 |
return True
|
146 |
|
147 |
except Exception as e:
|
@@ -151,15 +115,19 @@ def is_model_on_hub(model_name) -> bool:
|
|
151 |
|
152 |
|
153 |
|
154 |
-
def add_new_eval(model:str, private:bool, is_8_bit_eval: bool, is_delta_weight:bool):
|
155 |
# check the model actually exists before adding the eval
|
156 |
-
if
|
|
|
|
|
|
|
157 |
print(model, "not found on hub")
|
158 |
return
|
159 |
print("adding new eval")
|
160 |
|
161 |
eval_entry = {
|
162 |
"model" : model,
|
|
|
163 |
"private" : private,
|
164 |
"8bit_eval" : is_8_bit_eval,
|
165 |
"is_delta_weight" : is_delta_weight,
|
@@ -227,14 +195,17 @@ with block:
|
|
227 |
# with gr.Row():
|
228 |
# gr.Markdown(f"""# Submit a new model for evaluation""")
|
229 |
with gr.Row():
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
|
|
|
|
|
|
234 |
|
235 |
with gr.Row():
|
236 |
submit_button = gr.Button("Submit Eval")
|
237 |
-
submit_button.click(add_new_eval, [model_name_textbox, is_8bit_toggle, private, is_delta_weight])
|
238 |
|
239 |
|
240 |
|
|
|
8 |
from apscheduler.schedulers.background import BackgroundScheduler
|
9 |
import pandas as pd
|
10 |
import datetime
|
11 |
+
from utils import get_eval_results_dicts, make_clickable_model, get_n_params
|
12 |
|
13 |
# clone / pull the lmeh eval data
|
14 |
H4_TOKEN = os.environ.get("H4_TOKEN", None)
|
|
|
45 |
mean_acc = np.mean(accs)
|
46 |
return mean_acc, data["config"]["model_args"]
|
47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
+
COLS = ["eval_name", "total ⬆️", "ARC (25-shot) ⬆️", "HellaSwag (10-shot) ⬆️", "MMLU (5-shot) ⬆️", "TruthQA (0-shot) ⬆️", "base_model"]
|
50 |
+
TYPES = ["str", "number", "number", "number", "number", "number","markdown", ]
|
51 |
|
52 |
+
EVAL_COLS = ["model", "revision", "private", "8bit_eval", "is_delta_weight", "status"]
|
53 |
+
EVAL_TYPES = ["markdown","str", "bool", "bool", "bool", "str"]
|
54 |
def get_leaderboard():
|
55 |
if repo:
|
56 |
print("pulling changes")
|
57 |
repo.git_pull()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
all_data = get_eval_results_dicts()
|
60 |
dataframe = pd.DataFrame.from_records(all_data)
|
|
|
79 |
|
80 |
data["# params"] = get_n_params(data["model"])
|
81 |
data["model"] = make_clickable_model(data["model"])
|
82 |
+
data["revision"] = data.get("revision", "main")
|
83 |
|
84 |
|
85 |
all_evals.append(data)
|
|
|
91 |
with open(file_path) as fp:
|
92 |
data = json.load(fp)
|
93 |
|
94 |
+
#data["# params"] = get_n_params(data["model"])
|
95 |
data["model"] = make_clickable_model(data["model"])
|
96 |
all_evals.append(data)
|
97 |
|
|
|
103 |
leaderboard = get_leaderboard()
|
104 |
eval_queue = get_eval_table()
|
105 |
|
106 |
+
def is_model_on_hub(model_name, revision) -> bool:
|
107 |
try:
|
108 |
+
config = AutoConfig.from_pretrained(model_name, revision=revision)
|
109 |
return True
|
110 |
|
111 |
except Exception as e:
|
|
|
115 |
|
116 |
|
117 |
|
118 |
+
def add_new_eval(model:str, revision:str, private:bool, is_8_bit_eval: bool, is_delta_weight:bool):
|
119 |
# check the model actually exists before adding the eval
|
120 |
+
if revision == "":
|
121 |
+
revision = "main"
|
122 |
+
print("revision", revision)
|
123 |
+
if not is_model_on_hub(model, revision):
|
124 |
print(model, "not found on hub")
|
125 |
return
|
126 |
print("adding new eval")
|
127 |
|
128 |
eval_entry = {
|
129 |
"model" : model,
|
130 |
+
"revision" : revision,
|
131 |
"private" : private,
|
132 |
"8bit_eval" : is_8_bit_eval,
|
133 |
"is_delta_weight" : is_delta_weight,
|
|
|
195 |
# with gr.Row():
|
196 |
# gr.Markdown(f"""# Submit a new model for evaluation""")
|
197 |
with gr.Row():
|
198 |
+
with gr.Column():
|
199 |
+
model_name_textbox = gr.Textbox(label="Model name")
|
200 |
+
revision_name_textbox = gr.Textbox(label="revision", placeholder="main")
|
201 |
+
with gr.Column():
|
202 |
+
is_8bit_toggle = gr.Checkbox(False, label="8 bit eval")
|
203 |
+
private = gr.Checkbox(False, label="Private")
|
204 |
+
is_delta_weight = gr.Checkbox(False, label="Delta weights")
|
205 |
|
206 |
with gr.Row():
|
207 |
submit_button = gr.Button("Submit Eval")
|
208 |
+
submit_button.click(add_new_eval, [model_name_textbox, revision_name_textbox, is_8bit_toggle, private, is_delta_weight])
|
209 |
|
210 |
|
211 |
|
utils.py
CHANGED
@@ -3,7 +3,7 @@ import shutil
|
|
3 |
import numpy as np
|
4 |
import gradio as gr
|
5 |
from huggingface_hub import Repository, HfApi
|
6 |
-
from transformers import AutoConfig
|
7 |
import json
|
8 |
from apscheduler.schedulers.background import BackgroundScheduler
|
9 |
import pandas as pd
|
@@ -15,18 +15,6 @@ from typing import List, Tuple, Dict
|
|
15 |
H4_TOKEN = os.environ.get("H4_TOKEN", None)
|
16 |
LMEH_REPO = "HuggingFaceH4/lmeh_evaluations"
|
17 |
|
18 |
-
# repo=None
|
19 |
-
# if H4_TOKEN:
|
20 |
-
# print("pulling repo")
|
21 |
-
# # try:
|
22 |
-
# # shutil.rmtree("./evals/")
|
23 |
-
# # except:
|
24 |
-
# # pass
|
25 |
-
|
26 |
-
# repo = Repository(
|
27 |
-
# local_dir="./evals/", clone_from=LMEH_REPO, use_auth_token=H4_TOKEN, repo_type="dataset"
|
28 |
-
# )
|
29 |
-
# repo.git_pull()
|
30 |
METRICS = ["acc_norm", "acc_norm", "acc_norm", "mc2"]
|
31 |
BENCHMARKS = ["arc_challenge", "hellaswag", "hendrycks", "truthfulqa_mc"]
|
32 |
BENCH_TO_NAME = {
|
@@ -42,6 +30,21 @@ def make_clickable_model(model_name):
|
|
42 |
link = "https://huggingface.co/" + model_name
|
43 |
return f'<a target="_blank" href="{link}" style="color: blue; text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
|
44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
@dataclass
|
46 |
class EvalResult:
|
47 |
eval_name : str
|
@@ -50,12 +53,17 @@ class EvalResult:
|
|
50 |
is_8bit : bool
|
51 |
results : dict
|
52 |
|
53 |
-
def to_dict(self):
|
|
|
|
|
|
|
|
|
|
|
54 |
data_dict = {}
|
55 |
data_dict["eval_name"] = self.eval_name
|
56 |
-
data_dict["base_model"] = make_clickable_model(
|
57 |
data_dict["total ⬆️"] = round(sum([v for k,v in self.results.items()]),3)
|
58 |
-
data_dict["# params"] =
|
59 |
|
60 |
for benchmark in BENCHMARKS:
|
61 |
if not benchmark in self.results.keys():
|
|
|
3 |
import numpy as np
|
4 |
import gradio as gr
|
5 |
from huggingface_hub import Repository, HfApi
|
6 |
+
from transformers import AutoConfig, AutoModel
|
7 |
import json
|
8 |
from apscheduler.schedulers.background import BackgroundScheduler
|
9 |
import pandas as pd
|
|
|
15 |
H4_TOKEN = os.environ.get("H4_TOKEN", None)
|
16 |
LMEH_REPO = "HuggingFaceH4/lmeh_evaluations"
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
METRICS = ["acc_norm", "acc_norm", "acc_norm", "mc2"]
|
19 |
BENCHMARKS = ["arc_challenge", "hellaswag", "hendrycks", "truthfulqa_mc"]
|
20 |
BENCH_TO_NAME = {
|
|
|
30 |
link = "https://huggingface.co/" + model_name
|
31 |
return f'<a target="_blank" href="{link}" style="color: blue; text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
|
32 |
|
33 |
+
def get_n_params(base_model):
|
34 |
+
return "unknown"
|
35 |
+
|
36 |
+
# WARNING: High memory usage
|
37 |
+
|
38 |
+
# Retrieve the number of parameters from the configuration
|
39 |
+
try:
|
40 |
+
config = AutoConfig.from_pretrained(base_model, use_auth_token=True, low_cpu_mem_usage=True)
|
41 |
+
n_params = AutoModel.from_config(config).num_parameters()
|
42 |
+
except Exception as e:
|
43 |
+
print(f"Error:{e} The number of parameters is not available in the config for the model '{base_model}'.")
|
44 |
+
return "unknown"
|
45 |
+
|
46 |
+
return str(n_params)
|
47 |
+
|
48 |
@dataclass
|
49 |
class EvalResult:
|
50 |
eval_name : str
|
|
|
53 |
is_8bit : bool
|
54 |
results : dict
|
55 |
|
56 |
+
def to_dict(self):
|
57 |
+
|
58 |
+
if self.org is not None:
|
59 |
+
base_model =f"{self.org}/{self.model}"
|
60 |
+
else:
|
61 |
+
base_model =f"{self.model}"
|
62 |
data_dict = {}
|
63 |
data_dict["eval_name"] = self.eval_name
|
64 |
+
data_dict["base_model"] = make_clickable_model(base_model)
|
65 |
data_dict["total ⬆️"] = round(sum([v for k,v in self.results.items()]),3)
|
66 |
+
data_dict["# params"] = get_n_params(base_model)
|
67 |
|
68 |
for benchmark in BENCHMARKS:
|
69 |
if not benchmark in self.results.keys():
|