File size: 7,071 Bytes
9d22eee 2a5f9fb df66f6e 1ffc326 efeee6d 9d22eee 314f91a 2a5f9fb 318071f 2a5f9fb efeee6d 9d22eee 318071f 91f5d94 2d29ab2 9b6020a 91f5d94 318071f 2d29ab2 318071f 9d22eee 9b6020a 318071f 9d22eee 2a5f9fb efeee6d 2a5f9fb efeee6d 2a5f9fb 9d22eee 2a5f9fb 9833cdb 2a5f9fb 9d22eee 2a5f9fb 9d22eee 55cc480 b899767 9d22eee 55cc480 b899767 9d22eee 2a5f9fb b1a1395 2a5f9fb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
from dataclasses import dataclass, make_dataclass
from enum import Enum
import pandas as pd
from src.about import Tasks
def fields(raw_class):
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
# These classes are for user facing column names,
# to avoid having to change them all around the code
# when a modif is needed
@dataclass
class ColumnContent:
name: str
type: str
displayed_by_default: bool
category: str = "" # New attribute to hold the category
hidden: bool = False
never_hidden: bool = False
## Leaderboard columns
auto_eval_column_dict = []
# Model Information
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, category="Model Information", never_hidden=True)])
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, category="Model Information", never_hidden=True)])
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True, category="Model Information")])
auto_eval_column_dict.append(["average_IE", ColumnContent, ColumnContent("Average IE ⬆️", "number", True, category="Information Extraction (IE)")])
auto_eval_column_dict.append(["average_TA", ColumnContent, ColumnContent("Average TA ⬆️", "number", True, category="Textual Analysis (TA)")])
auto_eval_column_dict.append(["average_QA", ColumnContent, ColumnContent("Average QA ⬆️", "number", True, category="Question Answering (QA)")])
auto_eval_column_dict.append(["average_TG", ColumnContent, ColumnContent("Average TG ⬆️", "number", True, category="Text Generation (TG)")])
auto_eval_column_dict.append(["average_RM", ColumnContent, ColumnContent("Average RM ⬆️", "number", True, category="Risk Management (RM)")])
auto_eval_column_dict.append(["average_FO", ColumnContent, ColumnContent("Average FO ⬆️", "number", True, category="Forecasting (FO)")])
auto_eval_column_dict.append(["average_DM", ColumnContent, ColumnContent("Average DM ⬆️", "number", True, category="Decision-Making (DM)")])
auto_eval_column_dict.append(["average_Spanish", ColumnContent, ColumnContent("Average Spanish ⬆️", "number", True, category="Spanish")])
auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False, category="Model Information")])
auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False, category="Model Information")])
auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, category="Model Information", hidden=True)])
auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False, category="Model Information")])
auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False, category="Model Information")])
auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False, category="Model Information")])
auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False, category="Model Information")])
auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False, category="Model Information")])
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, category="Model Information", hidden=False)])
for task in Tasks:
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", False, category=task.value.category)])
# We use make_dataclass to dynamically fill the scores from Tasks
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
## For the queue columns in the submission tab
@dataclass(frozen=True)
class EvalQueueColumn: # Queue column
model = ColumnContent("model", "markdown", True)
revision = ColumnContent("revision", "str", True)
private = ColumnContent("private", "bool", True)
precision = ColumnContent("precision", "str", True)
weight_type = ColumnContent("weight_type", "str", "Original")
status = ColumnContent("status", "str", True)
## All the model information that we might need
@dataclass
class ModelDetails:
name: str
display_name: str = ""
symbol: str = "" # emoji
class ModelType(Enum):
PT = ModelDetails(name="pretrained", symbol="🟢")
FT = ModelDetails(name="fine-tuned", symbol="🔶")
IFT = ModelDetails(name="instruction-tuned", symbol="⭕")
RL = ModelDetails(name="RL-tuned", symbol="🟦")
Unknown = ModelDetails(name="", symbol="?")
def to_str(self, separator=" "):
return f"{self.value.symbol}{separator}{self.value.name}"
@staticmethod
def from_str(type):
if "fine-tuned" in type or "🔶" in type:
return ModelType.FT
if "pretrained" in type or "🟢" in type:
return ModelType.PT
if "RL-tuned" in type or "🟦" in type:
return ModelType.RL
if "instruction-tuned" in type or "⭕" in type:
return ModelType.IFT
return ModelType.Unknown
class WeightType(Enum):
Adapter = ModelDetails("Adapter")
Original = ModelDetails("Original")
Delta = ModelDetails("Delta")
class Precision(Enum):
float16 = ModelDetails("float16")
bfloat16 = ModelDetails("bfloat16")
float32 = ModelDetails("float32")
#qt_8bit = ModelDetails("8bit")
#qt_4bit = ModelDetails("4bit")
#qt_GPTQ = ModelDetails("GPTQ")
Unknown = ModelDetails("?")
def from_str(precision):
if precision in ["torch.float16", "float16"]:
return Precision.float16
if precision in ["torch.bfloat16", "bfloat16"]:
return Precision.bfloat16
if precision in ["float32"]:
return Precision.float32
#if precision in ["8bit"]:
# return Precision.qt_8bit
#if precision in ["4bit"]:
# return Precision.qt_4bit
#if precision in ["GPTQ", "None"]:
# return Precision.qt_GPTQ
return Precision.Unknown
# Column selection
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
TYPES = [c.type for c in fields(AutoEvalColumn) if not c.hidden]
COLS_LITE = [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]
TYPES_LITE = [c.type for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
BENCHMARK_COLS = [t.value.col_name for t in Tasks]
NUMERIC_INTERVALS = {
"?": pd.Interval(-1, 0, closed="right"),
"~1.5": pd.Interval(0, 2, closed="right"),
"~3": pd.Interval(2, 4, closed="right"),
"~7": pd.Interval(4, 9, closed="right"),
"~13": pd.Interval(9, 20, closed="right"),
"~35": pd.Interval(20, 45, closed="right"),
"~60": pd.Interval(45, 70, closed="right"),
"70+": pd.Interval(70, 10000, closed="right"),
}
|