fffiloni's picture
Update app.py
4399e27
raw
history blame
3.88 kB
import os
os.system("wget https://huggingface.co/akhaliq/lama/resolve/main/best.ckpt")
os.system("pip install imageio")
os.system("pip install albumentations==0.5.2")
os.system("pip install opencv-python")
os.system("pip install ffmpeg-python")
os.system("pip install moviepy")
import cv2
import paddlehub as hub
import gradio as gr
import torch
from PIL import Image, ImageOps
import numpy as np
import imageio
from moviepy.editor import *
os.mkdir("data")
os.rename("best.ckpt", "models/best.ckpt")
os.mkdir("dataout")
def get_frames(video_in):
frames = []
#resize the video
clip = VideoFileClip(video_in)
#check fps
if clip.fps > 30:
print("vide rate is over 30, resetting to 30")
clip_resized = clip.resize(height=256)
clip_resized.write_videofile("video_resized.mp4", fps=30)
else:
print("video rate is OK")
clip_resized = clip.resize(height=256)
clip_resized.write_videofile("video_resized.mp4", fps=clip.fps)
print("video resized to 512 height")
# Opens the Video file with CV2
cap= cv2.VideoCapture("video_resized.mp4")
fps = cap.get(cv2.CAP_PROP_FPS)
print("video fps: " + str(fps))
i=0
while(cap.isOpened()):
ret, frame = cap.read()
if ret == False:
break
cv2.imwrite('kang'+str(i)+'.jpg',frame)
frames.append('kang'+str(i)+'.jpg')
i+=1
cap.release()
cv2.destroyAllWindows()
print("broke the video into frames")
return frames, fps
def create_video(frames, fps, type):
print("building video result")
clip = ImageSequenceClip(frames, fps=fps)
clip.write_videofile(type + "_result.mp4", fps=fps)
return type + "_result.mp4"
def magic_lama(img):
i = img
img = Image.open(img)
mask = Image.open("./masks/modelscope-mask.png")
inverted_mask = ImageOps.invert(mask)
imageio.imwrite(f"./data/data.png", img)
imageio.imwrite(f"./data/data_mask.png", inverted_mask)
os.system('python predict.py model.path=/home/user/app/ indir=/home/user/app/data/ outdir=/home/user/app/dataout/ device=cpu')
return f"./dataout/data_mask.png"
def infer(video_in):
# 1. break video into frames and get FPS
break_vid = get_frames(video_in)
frames_list= break_vid[0]
fps = break_vid[1]
#n_frame = int(trim_value*fps)
n_frame = len(frames_list)
if n_frame >= len(frames_list):
print("video is shorter than the cut value")
n_frame = len(frames_list)
# 2. prepare frames result arrays
result_frames = []
print("set stop frames to: " + str(n_frame))
for i in frames_list[0:int(n_frame)]:
lama_frame = magic_lama(i)
lama_frame = Image.open(lama_frame)
imageio.imwrite(f"cleaned_frame_{i}", lama_frame)
result_frames.append(f"cleaned_frame_{i}")
print("frame " + i + "/" + str(n_frame) + ": done;")
final_vid = create_video(result_frames, fps, "cleaned")
files = [final_vid]
return final_vid, files
inputs = [gr.Video(label="Input", source="upload", type="filepath")]
outputs = [gr.Video(label="output"),
gr.Files(label="Download Video")]
title = "LaMa Image Inpainting"
description = "Gradio demo for LaMa: Resolution-robust Large Mask Inpainting with Fourier Convolutions. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below. Masks are generated by U^2net"
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2109.07161' target='_blank'>Resolution-robust Large Mask Inpainting with Fourier Convolutions</a> | <a href='https://github.com/saic-mdal/lama' target='_blank'>Github Repo</a></p>"
gr.Interface(infer, inputs, outputs, title=title,
description=description, article=article).launch()