File size: 3,876 Bytes
24eb05d
 
 
 
5149f3a
 
 
24eb05d
 
 
 
 
 
 
5149f3a
24eb05d
 
 
 
5149f3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24eb05d
5149f3a
 
 
 
24eb05d
5149f3a
 
 
 
24eb05d
5149f3a
24eb05d
6596e7b
24eb05d
 
 
4399e27
 
24eb05d
4399e27
5149f3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4399e27
 
 
5149f3a
 
 
 
 
 
24eb05d
5149f3a
24eb05d
8658821
5149f3a
 
24eb05d
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import os
os.system("wget https://huggingface.co/akhaliq/lama/resolve/main/best.ckpt")
os.system("pip install imageio")
os.system("pip install albumentations==0.5.2")
os.system("pip install opencv-python")
os.system("pip install ffmpeg-python")
os.system("pip install moviepy")
import cv2
import paddlehub as hub
import gradio as gr
import torch
from PIL import Image, ImageOps
import numpy as np
import imageio
from moviepy.editor import *
os.mkdir("data")
os.rename("best.ckpt", "models/best.ckpt")
os.mkdir("dataout")

def get_frames(video_in):
    frames = []
    #resize the video
    clip = VideoFileClip(video_in)
    
    #check fps
    if clip.fps > 30:
        print("vide rate is over 30, resetting to 30")
        clip_resized = clip.resize(height=256)
        clip_resized.write_videofile("video_resized.mp4", fps=30)
    else:
        print("video rate is OK")
        clip_resized = clip.resize(height=256)
        clip_resized.write_videofile("video_resized.mp4", fps=clip.fps)
    
    print("video resized to 512 height")
    
    # Opens the Video file with CV2
    cap= cv2.VideoCapture("video_resized.mp4")
    
    fps = cap.get(cv2.CAP_PROP_FPS)
    print("video fps: " + str(fps))
    i=0
    while(cap.isOpened()):
        ret, frame = cap.read()
        if ret == False:
            break
        cv2.imwrite('kang'+str(i)+'.jpg',frame)
        frames.append('kang'+str(i)+'.jpg')
        i+=1
    
    cap.release()
    cv2.destroyAllWindows()
    print("broke the video into frames")
    
    return frames, fps

def create_video(frames, fps, type):
    print("building video result")
    clip = ImageSequenceClip(frames, fps=fps)
    clip.write_videofile(type + "_result.mp4", fps=fps)
    
    return type + "_result.mp4"


def magic_lama(img):
    
    i = img
    img = Image.open(img)
    mask = Image.open("./masks/modelscope-mask.png")
    inverted_mask = ImageOps.invert(mask)
    
    
    imageio.imwrite(f"./data/data.png", img)
    imageio.imwrite(f"./data/data_mask.png", inverted_mask)
    os.system('python predict.py model.path=/home/user/app/ indir=/home/user/app/data/ outdir=/home/user/app/dataout/ device=cpu')
    return f"./dataout/data_mask.png"

def infer(video_in):
    # 1. break video into frames and get FPS
    break_vid = get_frames(video_in)
    frames_list= break_vid[0]
    fps = break_vid[1]
    #n_frame = int(trim_value*fps)
    n_frame = len(frames_list)
    
    if n_frame >= len(frames_list):
        print("video is shorter than the cut value")
        n_frame = len(frames_list)
    
    # 2. prepare frames result arrays
    result_frames = []
    print("set stop frames to: " + str(n_frame))
    
    for i in frames_list[0:int(n_frame)]:
        lama_frame = magic_lama(i)
        lama_frame = Image.open(lama_frame)
        imageio.imwrite(f"cleaned_frame_{i}", lama_frame)
        result_frames.append(f"cleaned_frame_{i}")
        print("frame " + i + "/" + str(n_frame) + ": done;")

    
    final_vid = create_video(result_frames, fps, "cleaned")

    files = [final_vid]

    return final_vid, files

inputs = [gr.Video(label="Input", source="upload", type="filepath")]
outputs = [gr.Video(label="output"),
           gr.Files(label="Download Video")]
title = "LaMa Image Inpainting"
description = "Gradio demo for LaMa: Resolution-robust Large Mask Inpainting with Fourier Convolutions. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below. Masks are generated by U^2net"
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2109.07161' target='_blank'>Resolution-robust Large Mask Inpainting with Fourier Convolutions</a> | <a href='https://github.com/saic-mdal/lama' target='_blank'>Github Repo</a></p>"
gr.Interface(infer, inputs, outputs, title=title,
             description=description, article=article).launch()