|
from langchain.embeddings.openai import OpenAIEmbeddings |
|
from langchain.embeddings import HuggingFaceEmbeddings |
|
from langchain.text_splitter import CharacterTextSplitter |
|
from langchain.vectorstores import FAISS |
|
from langchain.chains.question_answering import load_qa_chain |
|
from langchain.llms import OpenAI |
|
from gradio import gradio as gr |
|
from langchain.chat_models import ChatOpenAI |
|
|
|
from langchain import PromptTemplate, LLMChain |
|
from langchain.llms import TextGen |
|
from langchain.cache import InMemoryCache |
|
|
|
from langchain.prompts.chat import ( |
|
ChatPromptTemplate, |
|
SystemMessagePromptTemplate, |
|
AIMessagePromptTemplate, |
|
HumanMessagePromptTemplate, |
|
) |
|
from langchain.schema import ( |
|
AIMessage, |
|
HumanMessage, |
|
SystemMessage |
|
) |
|
|
|
import time |
|
import langchain |
|
import os |
|
OPENAI_API_KEY=os.getenv('OPENAI_API_KEY') |
|
|
|
|
|
|
|
embeddings = HuggingFaceEmbeddings(model_name="BAAI/bge-large-en") |
|
|
|
|
|
|
|
docsearch = FAISS.load_local("./faiss_index", embeddings) |
|
chain = load_qa_chain(OpenAI(temperature=0,model_name="gpt-3.5-turbo", verbose=True), chain_type="stuff",verbose=True) |
|
|
|
|
|
|
|
template="您是回答所有ANSYS软件使用查询的得力助手,如果所问的内容不在范围内,请回答您提的问题不在本知识库内,请重新提问. {input_language} to {output_language}." |
|
system_message_prompt = SystemMessagePromptTemplate.from_template(template) |
|
human_template="{text}" |
|
human_message_prompt = HumanMessagePromptTemplate.from_template(human_template) |
|
|
|
|
|
|
|
def predict(message, history): |
|
history_langchain_format = [] |
|
for human, ai in history: |
|
history_langchain_format.append(SystemMessage(content=system)) |
|
history_langchain_format.append(HumanMessage(content=human)) |
|
history_langchain_format.append(AIMessage(content=ai)) |
|
history_langchain_format.append(HumanMessage(content=message)) |
|
docs = docsearch.similarity_search(message) |
|
response = chain.run(input_documents=docs, question=message) |
|
|
|
|
|
partial_message = "" |
|
for chunk in response: |
|
if len(chunk[0]) != 0: |
|
time.sleep(0.1) |
|
partial_message = partial_message + chunk[0] |
|
yield partial_message |
|
|
|
langchain.llm_cache = InMemoryCache() |
|
|
|
gr.ChatInterface(predict, |
|
textbox=gr.Textbox(placeholder="请输入您的问题", container=False, scale=7), |
|
title="欢迎使用ANSYS软件AI机器人", |
|
examples=["你是谁?", "请介绍一下Fluent 软件的用户界面说明", "create-bounding-box","ANSYS Fluent Architecture"], |
|
description="🦊请避免输入有违公序良俗的问题,模型可能无法回答不合适的问题🐇",).queue().launch() |