Spaces:
Running
on
Zero
Running
on
Zero
Upload app.py
Browse files
app.py
CHANGED
@@ -59,7 +59,7 @@ parser.add_argument('--pretrained_vae_model_path',
|
|
59 |
default="./ckpt/sd-vae-ft-mse/",
|
60 |
type=str)
|
61 |
parser.add_argument('--model_ckpt',
|
62 |
-
default="
|
63 |
type=str)
|
64 |
parser.add_argument('--output_path', type=str, default="./output_ipa_control_resampler")
|
65 |
# parser.add_argument('--device', type=str, default="cuda:0")
|
@@ -78,12 +78,12 @@ base_path = 'feishen29/IMAGDressing-v1'
|
|
78 |
|
79 |
generator = torch.Generator(device=args.device).manual_seed(42)
|
80 |
vae = AutoencoderKL.from_pretrained(args.pretrained_vae_model_path).to(dtype=torch.float16, device=args.device)
|
81 |
-
tokenizer = CLIPTokenizer.from_pretrained(
|
82 |
-
text_encoder = CLIPTextModel.from_pretrained(
|
83 |
dtype=torch.float16, device=args.device)
|
84 |
image_encoder = CLIPVisionModelWithProjection.from_pretrained(args.pretrained_image_encoder_path).to(
|
85 |
dtype=torch.float16, device=args.device)
|
86 |
-
unet = UNet2DConditionModel.from_pretrained(
|
87 |
dtype=torch.float16,device=args.device)
|
88 |
|
89 |
image_face_fusion = pipeline('face_fusion_torch', model='damo/cv_unet_face_fusion_torch', model_revision='v1.0.3')
|
@@ -129,7 +129,7 @@ adapter_modules = torch.nn.ModuleList(unet.attn_processors.values())
|
|
129 |
adapter_modules = adapter_modules.to(dtype=torch.float16, device=args.device)
|
130 |
del st
|
131 |
|
132 |
-
ref_unet = UNet2DConditionModel.from_pretrained(
|
133 |
dtype=torch.float16,
|
134 |
device=args.device)
|
135 |
ref_unet.set_attn_processor(
|
|
|
59 |
default="./ckpt/sd-vae-ft-mse/",
|
60 |
type=str)
|
61 |
parser.add_argument('--model_ckpt',
|
62 |
+
default="./ckpt/IMAGDressing-v1_512.pt",
|
63 |
type=str)
|
64 |
parser.add_argument('--output_path', type=str, default="./output_ipa_control_resampler")
|
65 |
# parser.add_argument('--device', type=str, default="cuda:0")
|
|
|
78 |
|
79 |
generator = torch.Generator(device=args.device).manual_seed(42)
|
80 |
vae = AutoencoderKL.from_pretrained(args.pretrained_vae_model_path).to(dtype=torch.float16, device=args.device)
|
81 |
+
tokenizer = CLIPTokenizer.from_pretrained("./ckpt/tokenizer")
|
82 |
+
text_encoder = CLIPTextModel.from_pretrained("./ckpt/text_encoder").to(
|
83 |
dtype=torch.float16, device=args.device)
|
84 |
image_encoder = CLIPVisionModelWithProjection.from_pretrained(args.pretrained_image_encoder_path).to(
|
85 |
dtype=torch.float16, device=args.device)
|
86 |
+
unet = UNet2DConditionModel.from_pretrained("./ckpt/unet").to(
|
87 |
dtype=torch.float16,device=args.device)
|
88 |
|
89 |
image_face_fusion = pipeline('face_fusion_torch', model='damo/cv_unet_face_fusion_torch', model_revision='v1.0.3')
|
|
|
129 |
adapter_modules = adapter_modules.to(dtype=torch.float16, device=args.device)
|
130 |
del st
|
131 |
|
132 |
+
ref_unet = UNet2DConditionModel.from_pretrained("./ckpt/unet").to(
|
133 |
dtype=torch.float16,
|
134 |
device=args.device)
|
135 |
ref_unet.set_attn_processor(
|