Spaces:
Running
on
Zero
Running
on
Zero
Delete ckpt/app.py
Browse files- ckpt/app.py +0 -399
ckpt/app.py
DELETED
@@ -1,399 +0,0 @@
|
|
1 |
-
import sys
|
2 |
-
from PIL import Image
|
3 |
-
import gradio as gr
|
4 |
-
import numpy as np
|
5 |
-
import cv2
|
6 |
-
from modelscope.outputs import OutputKeys
|
7 |
-
from modelscope.pipelines import pipeline
|
8 |
-
from modelscope.utils.constant import Tasks
|
9 |
-
from dressing_sd.pipelines.pipeline_sd import PipIpaControlNet
|
10 |
-
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
|
11 |
-
|
12 |
-
from torchvision import transforms
|
13 |
-
import cv2
|
14 |
-
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
|
15 |
-
import diffusers
|
16 |
-
|
17 |
-
from transformers import CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
|
18 |
-
from adapter.attention_processor import CacheAttnProcessor2_0, RefSAttnProcessor2_0, RefLoraSAttnProcessor2_0, LoRAIPAttnProcessor2_0
|
19 |
-
from diffusers import ControlNetModel, UNet2DConditionModel, \
|
20 |
-
AutoencoderKL, DDIMScheduler
|
21 |
-
from adapter.resampler import Resampler
|
22 |
-
|
23 |
-
from transformers import (
|
24 |
-
CLIPImageProcessor,
|
25 |
-
CLIPVisionModelWithProjection,
|
26 |
-
CLIPTextModel,
|
27 |
-
CLIPTextModelWithProjection,
|
28 |
-
)
|
29 |
-
from diffusers import DDPMScheduler, AutoencoderKL, UniPCMultistepScheduler
|
30 |
-
from typing import List
|
31 |
-
|
32 |
-
import torch
|
33 |
-
|
34 |
-
import argparse
|
35 |
-
import os
|
36 |
-
|
37 |
-
from controlnet_aux import OpenposeDetector
|
38 |
-
from insightface.app import FaceAnalysis
|
39 |
-
from insightface.utils import face_align
|
40 |
-
|
41 |
-
|
42 |
-
# device = 'cuda:2' if torch.cuda.is_available() else 'cpu'
|
43 |
-
|
44 |
-
parser = argparse.ArgumentParser(description='ReferenceAdapter diffusion')
|
45 |
-
parser.add_argument('--if_resampler', type=bool, default=True)
|
46 |
-
parser.add_argument('--if_ipa', type=bool, default=True)
|
47 |
-
parser.add_argument('--if_control', type=bool, default=True)
|
48 |
-
|
49 |
-
parser.add_argument('--pretrained_model_name_or_path',
|
50 |
-
default="./ckpt/Realistic_Vision_V4.0_noVAE",
|
51 |
-
type=str)
|
52 |
-
parser.add_argument('--ip_ckpt',
|
53 |
-
default="./ckpt/ip-adapter-faceid-plus_sd15.bin",
|
54 |
-
type=str)
|
55 |
-
parser.add_argument('--pretrained_image_encoder_path',
|
56 |
-
default="./ckpt/image_encoder/",
|
57 |
-
type=str)
|
58 |
-
parser.add_argument('--pretrained_vae_model_path',
|
59 |
-
default="./ckpt/sd-vae-ft-mse/",
|
60 |
-
type=str)
|
61 |
-
parser.add_argument('--model_ckpt',
|
62 |
-
default="./ckpt/IMAGDressing-v1_512.pt",
|
63 |
-
type=str)
|
64 |
-
parser.add_argument('--output_path', type=str, default="./output_ipa_control_resampler")
|
65 |
-
# parser.add_argument('--device', type=str, default="cuda:0")
|
66 |
-
args = parser.parse_args()
|
67 |
-
|
68 |
-
# svae path
|
69 |
-
output_path = args.output_path
|
70 |
-
|
71 |
-
if not os.path.exists(output_path):
|
72 |
-
os.makedirs(output_path)
|
73 |
-
|
74 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
75 |
-
args.device = device
|
76 |
-
|
77 |
-
base_path = 'feishen29/IMAGDressing-v1'
|
78 |
-
|
79 |
-
generator = torch.Generator(device=args.device).manual_seed(42)
|
80 |
-
vae = AutoencoderKL.from_pretrained(args.pretrained_vae_model_path).to(dtype=torch.float16, device=args.device)
|
81 |
-
tokenizer = CLIPTokenizer.from_pretrained("./ckpt/tokenizer")
|
82 |
-
text_encoder = CLIPTextModel.from_pretrained("./ckpt/text_encoder").to(
|
83 |
-
dtype=torch.float16, device=args.device)
|
84 |
-
image_encoder = CLIPVisionModelWithProjection.from_pretrained(args.pretrained_image_encoder_path).to(
|
85 |
-
dtype=torch.float16, device=args.device)
|
86 |
-
unet = UNet2DConditionModel.from_pretrained("./ckpt/unet").to(
|
87 |
-
dtype=torch.float16,device=args.device)
|
88 |
-
|
89 |
-
image_face_fusion = pipeline('face_fusion_torch', model='damo/cv_unet_face_fusion_torch', model_revision='v1.0.3')
|
90 |
-
|
91 |
-
#face_model
|
92 |
-
app = FaceAnalysis(providers=[('CUDAExecutionProvider', {"device_id": args.device})]) ##使用GPU:0, 默认使用buffalo_l就可以了
|
93 |
-
app.prepare(ctx_id=0, det_size=(640, 640))
|
94 |
-
|
95 |
-
# def ref proj weight
|
96 |
-
image_proj = Resampler(
|
97 |
-
dim=unet.config.cross_attention_dim,
|
98 |
-
depth=4,
|
99 |
-
dim_head=64,
|
100 |
-
heads=12,
|
101 |
-
num_queries=16,
|
102 |
-
embedding_dim=image_encoder.config.hidden_size,
|
103 |
-
output_dim=unet.config.cross_attention_dim,
|
104 |
-
ff_mult=4
|
105 |
-
)
|
106 |
-
image_proj = image_proj.to(dtype=torch.float16, device=args.device)
|
107 |
-
|
108 |
-
# set attention processor
|
109 |
-
attn_procs = {}
|
110 |
-
st = unet.state_dict()
|
111 |
-
for name in unet.attn_processors.keys():
|
112 |
-
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
|
113 |
-
if name.startswith("mid_block"):
|
114 |
-
hidden_size = unet.config.block_out_channels[-1]
|
115 |
-
elif name.startswith("up_blocks"):
|
116 |
-
block_id = int(name[len("up_blocks.")])
|
117 |
-
hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
|
118 |
-
elif name.startswith("down_blocks"):
|
119 |
-
block_id = int(name[len("down_blocks.")])
|
120 |
-
hidden_size = unet.config.block_out_channels[block_id]
|
121 |
-
# lora_rank = hidden_size // 2 # args.lora_rank
|
122 |
-
if cross_attention_dim is None:
|
123 |
-
attn_procs[name] = RefLoraSAttnProcessor2_0(name, hidden_size)
|
124 |
-
else:
|
125 |
-
attn_procs[name] = LoRAIPAttnProcessor2_0(hidden_size=hidden_size, cross_attention_dim=cross_attention_dim)
|
126 |
-
|
127 |
-
unet.set_attn_processor(attn_procs)
|
128 |
-
adapter_modules = torch.nn.ModuleList(unet.attn_processors.values())
|
129 |
-
adapter_modules = adapter_modules.to(dtype=torch.float16, device=args.device)
|
130 |
-
del st
|
131 |
-
|
132 |
-
ref_unet = UNet2DConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="unet").to(
|
133 |
-
dtype=torch.float16,
|
134 |
-
device=args.device)
|
135 |
-
ref_unet.set_attn_processor(
|
136 |
-
{name: CacheAttnProcessor2_0() for name in ref_unet.attn_processors.keys()}) # set cache
|
137 |
-
|
138 |
-
# weights load
|
139 |
-
model_sd = torch.load(args.model_ckpt, map_location="cpu")["module"]
|
140 |
-
|
141 |
-
ref_unet_dict = {}
|
142 |
-
unet_dict = {}
|
143 |
-
image_proj_dict = {}
|
144 |
-
adapter_modules_dict = {}
|
145 |
-
for k in model_sd.keys():
|
146 |
-
if k.startswith("ref_unet"):
|
147 |
-
ref_unet_dict[k.replace("ref_unet.", "")] = model_sd[k]
|
148 |
-
elif k.startswith("unet"):
|
149 |
-
unet_dict[k.replace("unet.", "")] = model_sd[k]
|
150 |
-
elif k.startswith("proj"):
|
151 |
-
image_proj_dict[k.replace("proj.", "")] = model_sd[k]
|
152 |
-
elif k.startswith("adapter_modules") and 'ref' in k:
|
153 |
-
adapter_modules_dict[k.replace("adapter_modules.", "")] = model_sd[k]
|
154 |
-
else:
|
155 |
-
print(k)
|
156 |
-
|
157 |
-
ref_unet.load_state_dict(ref_unet_dict)
|
158 |
-
image_proj.load_state_dict(image_proj_dict)
|
159 |
-
adapter_modules.load_state_dict(adapter_modules_dict, strict=False)
|
160 |
-
|
161 |
-
noise_scheduler = DDIMScheduler(
|
162 |
-
num_train_timesteps=1000,
|
163 |
-
beta_start=0.00085,
|
164 |
-
beta_end=0.012,
|
165 |
-
beta_schedule="scaled_linear",
|
166 |
-
clip_sample=False,
|
167 |
-
set_alpha_to_one=False,
|
168 |
-
steps_offset=1,
|
169 |
-
)
|
170 |
-
# noise_scheduler = UniPCMultistepScheduler.from_config(args.pretrained_model_name_or_path, subfolder="scheduler")
|
171 |
-
|
172 |
-
control_net_openpose = ControlNetModel.from_pretrained(
|
173 |
-
"/home/sf/control_v11p_sd15_openpose",
|
174 |
-
torch_dtype=torch.float16).to(device=args.device)
|
175 |
-
# pipe = PipIpaControlNet(unet=unet, reference_unet=ref_unet, vae=vae, tokenizer=tokenizer,
|
176 |
-
# text_encoder=text_encoder, image_encoder=image_encoder,
|
177 |
-
# ip_ckpt=args.ip_ckpt,
|
178 |
-
# ImgProj=image_proj, controlnet=control_net_openpose,
|
179 |
-
# scheduler=noise_scheduler,
|
180 |
-
# safety_checker=StableDiffusionSafetyChecker,
|
181 |
-
# feature_extractor=CLIPImageProcessor)
|
182 |
-
|
183 |
-
img_transform = transforms.Compose([
|
184 |
-
transforms.Resize([640, 512], interpolation=transforms.InterpolationMode.BILINEAR),
|
185 |
-
transforms.ToTensor(),
|
186 |
-
transforms.Normalize([0.5], [0.5]),
|
187 |
-
])
|
188 |
-
|
189 |
-
openpose_model = OpenposeDetector.from_pretrained("/home/sf/ControlNet").to(args.device)
|
190 |
-
|
191 |
-
def resize_img(input_image, max_side=640, min_side=512, size=None,
|
192 |
-
pad_to_max_side=False, mode=Image.BILINEAR, base_pixel_number=64):
|
193 |
-
w, h = input_image.size
|
194 |
-
ratio = min_side / min(h, w)
|
195 |
-
w, h = round(ratio*w), round(ratio*h)
|
196 |
-
ratio = max_side / max(h, w)
|
197 |
-
input_image = input_image.resize([round(ratio*w), round(ratio*h)], mode)
|
198 |
-
w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number
|
199 |
-
h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number
|
200 |
-
input_image = input_image.resize([w_resize_new, h_resize_new], mode)
|
201 |
-
return input_image
|
202 |
-
|
203 |
-
def tryon_process(garm_img, face_img, pose_img, prompt, cloth_guidance_scale, caption_guidance_scale,
|
204 |
-
face_guidance_scale,self_guidance_scale, cross_guidance_scale,if_ipa, if_post, if_control, denoise_steps, seed=42):
|
205 |
-
# prompt = prompt + ', confident smile expression, fashion, best quality, amazing quality, very aesthetic'
|
206 |
-
if prompt is None:
|
207 |
-
prompt = "a photography of a model"
|
208 |
-
prompt = prompt + ', best quality, high quality'
|
209 |
-
print(prompt, cloth_guidance_scale, if_ipa, if_control, denoise_steps, seed)
|
210 |
-
clip_image_processor = CLIPImageProcessor()
|
211 |
-
# clothes_img = garm_img.convert("RGB")
|
212 |
-
if not garm_img:
|
213 |
-
raise gr.Error("请上传衣服 / Please upload garment")
|
214 |
-
clothes_img = resize_img(garm_img)
|
215 |
-
vae_clothes = img_transform(clothes_img).unsqueeze(0)
|
216 |
-
# print(vae_clothes.shape)
|
217 |
-
ref_clip_image = clip_image_processor(images=clothes_img, return_tensors="pt").pixel_values
|
218 |
-
|
219 |
-
if if_ipa:
|
220 |
-
# image = cv2.imread(face_img)
|
221 |
-
faces = app.get(face_img)
|
222 |
-
|
223 |
-
if not faces:
|
224 |
-
raise gr.Error("人脸检测异常,尝试其他肖像 / Abnormal face detection. Try another portrait")
|
225 |
-
faceid_embeds = torch.from_numpy(faces[0].normed_embedding).unsqueeze(0)
|
226 |
-
face_image = face_align.norm_crop(face_img, landmark=faces[0].kps, image_size=224) # you can also segment the face
|
227 |
-
|
228 |
-
# face_img = face_image[:, :, ::-1]
|
229 |
-
# face_img = Image.fromarray(face_image.astype('uint8'))
|
230 |
-
# face_img.save('face.png')
|
231 |
-
|
232 |
-
face_clip_image = clip_image_processor(images=face_image, return_tensors="pt").pixel_values
|
233 |
-
else:
|
234 |
-
faceid_embeds = None
|
235 |
-
face_clip_image = None
|
236 |
-
|
237 |
-
if if_control:
|
238 |
-
pose_img = openpose_model(pose_img.convert("RGB"))
|
239 |
-
# pose_img.save('pose.png')
|
240 |
-
pose_image = diffusers.utils.load_image(pose_img)
|
241 |
-
else:
|
242 |
-
pose_image = None
|
243 |
-
# print(if_ipa, if_control)
|
244 |
-
# pipe, generator = prepare_pipeline(args, if_ipa, if_control, unet, ref_unet, vae, tokenizer, text_encoder,
|
245 |
-
# image_encoder, image_proj, control_net_openpose)
|
246 |
-
|
247 |
-
noise_scheduler = DDIMScheduler(
|
248 |
-
num_train_timesteps=1000,
|
249 |
-
beta_start=0.00085,
|
250 |
-
beta_end=0.012,
|
251 |
-
beta_schedule="scaled_linear",
|
252 |
-
clip_sample=False,
|
253 |
-
set_alpha_to_one=False,
|
254 |
-
steps_offset=1,
|
255 |
-
)
|
256 |
-
# noise_scheduler = UniPCMultistepScheduler.from_config(args.pretrained_model_name_or_path, subfolder="scheduler")
|
257 |
-
pipe = PipIpaControlNet(unet=unet, reference_unet=ref_unet, vae=vae, tokenizer=tokenizer,
|
258 |
-
text_encoder=text_encoder, image_encoder=image_encoder,
|
259 |
-
ip_ckpt=args.ip_ckpt,
|
260 |
-
ImgProj=image_proj, controlnet=control_net_openpose,
|
261 |
-
scheduler=noise_scheduler,
|
262 |
-
safety_checker=StableDiffusionSafetyChecker,
|
263 |
-
feature_extractor=CLIPImageProcessor)
|
264 |
-
output = pipe(
|
265 |
-
ref_image=vae_clothes,
|
266 |
-
prompt=prompt,
|
267 |
-
ref_clip_image=ref_clip_image,
|
268 |
-
pose_image=pose_image,
|
269 |
-
face_clip_image=face_clip_image,
|
270 |
-
faceid_embeds=faceid_embeds,
|
271 |
-
null_prompt='',
|
272 |
-
negative_prompt='bare, naked, nude, undressed, monochrome, lowres, bad anatomy, worst quality, low quality',
|
273 |
-
width=512,
|
274 |
-
height=640,
|
275 |
-
num_images_per_prompt=1,
|
276 |
-
guidance_scale=caption_guidance_scale,
|
277 |
-
image_scale=cloth_guidance_scale,
|
278 |
-
ipa_scale=face_guidance_scale,
|
279 |
-
s_lora_scale= self_guidance_scale,
|
280 |
-
c_lora_scale= cross_guidance_scale,
|
281 |
-
generator=generator,
|
282 |
-
num_inference_steps=denoise_steps,
|
283 |
-
).images
|
284 |
-
|
285 |
-
if if_post and if_ipa:
|
286 |
-
# 将 PIL 图像转换为 NumPy 数组
|
287 |
-
output_array = np.array(output[0])
|
288 |
-
# 将 RGB 图像转换为 BGR 图像
|
289 |
-
bgr_array = cv2.cvtColor(output_array, cv2.COLOR_RGB2BGR)
|
290 |
-
# 将 NumPy 数组转换为 PIL 图像
|
291 |
-
bgr_image = Image.fromarray(bgr_array)
|
292 |
-
result = image_face_fusion(dict(template=bgr_image, user=Image.fromarray(face_image.astype('uint8'))))
|
293 |
-
return result[OutputKeys.OUTPUT_IMG]
|
294 |
-
return output[0]
|
295 |
-
|
296 |
-
example_path = os.path.dirname(__file__)
|
297 |
-
|
298 |
-
garm_list = os.listdir(os.path.join(example_path, "cloth", 'cloth'))
|
299 |
-
garm_list_path = [os.path.join(example_path, "cloth", 'cloth', garm) for garm in garm_list]
|
300 |
-
|
301 |
-
face_list = os.listdir(os.path.join(example_path, "face", 'face'))
|
302 |
-
face_list_path = [os.path.join(example_path, "face", 'face', face) for face in face_list]
|
303 |
-
|
304 |
-
pose_list = os.listdir(os.path.join(example_path, "pose", 'pose'))
|
305 |
-
pose_list_path = [os.path.join(example_path, "pose", 'pose', pose) for pose in pose_list]
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
##default human
|
310 |
-
|
311 |
-
|
312 |
-
image_blocks = gr.Blocks().queue()
|
313 |
-
with image_blocks as demo:
|
314 |
-
gr.Markdown("## IMAGDressing-v1: Customizable Virtual Dressing 👕👔👚")
|
315 |
-
gr.Markdown(
|
316 |
-
"Customize your virtual look with ease—adjust your appearance, pose, and garment as you like<br>."
|
317 |
-
"If you enjoy this project, please check out the [source codes](https://github.com/muzishen/IMAGDressing) and [model](https://huggingface.co/feishen29/IMAGDressing). Do not hesitate to give us a star. Thank you!<br>"
|
318 |
-
"Your support fuels the development of new versions."
|
319 |
-
)
|
320 |
-
with gr.Row():
|
321 |
-
with gr.Column():
|
322 |
-
garm_img = gr.Image(label="Garment", sources='upload', type="pil")
|
323 |
-
example = gr.Examples(
|
324 |
-
inputs=garm_img,
|
325 |
-
examples_per_page=8,
|
326 |
-
examples=garm_list_path)
|
327 |
-
|
328 |
-
with gr.Column():
|
329 |
-
imgs = gr.Image(label="Face", sources='upload', type="numpy")
|
330 |
-
|
331 |
-
with gr.Row():
|
332 |
-
is_checked_face = gr.Checkbox(label="Yes", info="Use face ", value=False)
|
333 |
-
example = gr.Examples(
|
334 |
-
inputs=imgs,
|
335 |
-
examples_per_page=10,
|
336 |
-
examples=face_list_path
|
337 |
-
)
|
338 |
-
with gr.Row():
|
339 |
-
is_checked_postprocess = gr.Checkbox(label="Yes", info="Use postprocess ", value=False)
|
340 |
-
|
341 |
-
with gr.Column():
|
342 |
-
pose_img = gr.Image(label="Pose", sources='upload', type="pil")
|
343 |
-
with gr.Row():
|
344 |
-
is_checked_pose = gr.Checkbox(label="Yes", info="Use pose ", value=False)
|
345 |
-
|
346 |
-
example = gr.Examples(
|
347 |
-
inputs=pose_img,
|
348 |
-
examples_per_page=8,
|
349 |
-
examples=pose_list_path)
|
350 |
-
|
351 |
-
# with gr.Column():
|
352 |
-
# # image_out = gr.Image(label="Output", elem_id="output-img", height=400)
|
353 |
-
# masked_img = gr.Image(label="Masked image output", elem_id="masked-img", show_share_button=False)
|
354 |
-
with gr.Column():
|
355 |
-
# image_out = gr.Image(label="Output", elem_id="output-img", height=400)
|
356 |
-
image_out = gr.Image(label="Output", elem_id="output-img", show_share_button=False)
|
357 |
-
# Add usage tips below the output image
|
358 |
-
gr.Markdown("""
|
359 |
-
### Usage Tips
|
360 |
-
- **Upload Images**: Upload your desired garment, face, and pose images in the respective sections.
|
361 |
-
- **Select Options**: Use the checkboxes to include face and pose in the generated output.
|
362 |
-
- **View Output**: The resulting image will be displayed in the Output section.
|
363 |
-
- **Examples**: Click on example images to quickly load and test different configurations.
|
364 |
-
- **Advanced Settings**: Click on **Advanced Settings** to edit captions and adjust hyperparameters.
|
365 |
-
- **Feedback**: If you have any issues or suggestions, please let us know through the [GitHub repository](https://github.com/muzishen/IMAGDressing).
|
366 |
-
""")
|
367 |
-
with gr.Column():
|
368 |
-
try_button = gr.Button(value="Dressing")
|
369 |
-
with gr.Accordion(label="Advanced Settings", open=False):
|
370 |
-
with gr.Row(elem_id="prompt-container"):
|
371 |
-
with gr.Row():
|
372 |
-
prompt = gr.Textbox(placeholder="Description of prompt ex) A beautiful woman dress Short Sleeve Round Neck T-shirts",value='A beautiful woman',
|
373 |
-
show_label=False, elem_id="prompt")
|
374 |
-
# with gr.Row():
|
375 |
-
# neg_prompt = gr.Textbox(placeholder="Description of neg prompt ex) Short Sleeve Round Neck T-shirts",
|
376 |
-
# show_label=False, elem_id="neg_prompt")
|
377 |
-
with gr.Row():
|
378 |
-
cloth_guidance_scale = gr.Slider(label="Cloth guidance Scale", minimum=0.0, maximum=1.0, value=0.9, step=0.1,
|
379 |
-
visible=True)
|
380 |
-
with gr.Row():
|
381 |
-
caption_guidance_scale = gr.Slider(label="Prompt Guidance Scale", minimum=1, maximum=10., value=7.0, step=0.1,
|
382 |
-
visible=True)
|
383 |
-
with gr.Row():
|
384 |
-
face_guidance_scale = gr.Slider(label="Face Guidance Scale", minimum=0.0, maximum=2.0, value=0.9, step=0.1,
|
385 |
-
visible=True)
|
386 |
-
with gr.Row():
|
387 |
-
self_guidance_scale = gr.Slider(label="Self-Attention Lora Scale", minimum=0.0, maximum=0.5, value=0.2, step=0.1,
|
388 |
-
visible=True)
|
389 |
-
with gr.Row():
|
390 |
-
cross_guidance_scale = gr.Slider(label="Cross-Attention Lora Scale", minimum=0.0, maximum=0.5, value=0.2, step=0.1,
|
391 |
-
visible=True)
|
392 |
-
with gr.Row():
|
393 |
-
denoise_steps = gr.Number(label="Denoising Steps", minimum=20, maximum=50, value=30, step=1)
|
394 |
-
seed = gr.Number(label="Seed", minimum=-1, maximum=2147483647, step=1, value=20240508)
|
395 |
-
|
396 |
-
try_button.click(fn=tryon_process, inputs=[garm_img, imgs, pose_img, prompt, cloth_guidance_scale, caption_guidance_scale, face_guidance_scale,self_guidance_scale, cross_guidance_scale, is_checked_face, is_checked_postprocess, is_checked_pose, denoise_steps, seed],
|
397 |
-
outputs=[image_out], api_name='tryon')
|
398 |
-
|
399 |
-
image_blocks.launch(server_port=20021) # 指定固定端口
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|