deteksi-beras / app.py
faruqaziz's picture
Update app.py
1c48cfa verified
import gradio as gr
from roboflow import Roboflow
import supervision as sv
import cv2
from ultralytics import YOLOv10
import spaces
from huggingface_hub import hf_hub_download
def download_models(model_id):
hf_hub_download("faruqaziz/deteksi-beras", filename=f"{model_id}", local_dir=f"./")
return f"./{model_id}"
box_annotator = sv.BoxAnnotator()
category_dict = {0: 'arborio', 1: 'basmati', 2: 'ipsala', 3: 'jasmine', 4: 'karacadag'}
@spaces.GPU(duration=200)
def yolov10_inference(image, model_id, image_size, conf_threshold, iou_threshold):
model_path = download_models(model_id)
model = YOLOv10(model_path)
results = model(source=image, imgsz=image_size, iou=iou_threshold, conf=conf_threshold, verbose=False)[0]
detections = sv.Detections.from_ultralytics(results)
labels = [
f"{category_dict[class_id]} {confidence:.2f}"
for class_id, confidence in zip(detections.class_id, detections.confidence)
]
annotated_image = box_annotator.annotate(image, detections=detections, labels=labels)
return annotated_image
def app():
with gr.Blocks():
with gr.Row():
with gr.Column():
image = gr.Image(type="numpy", label="Image")
model_id = gr.Dropdown(
label="Model",
choices=[
"best.pt",
"last.pt",
],
value="best.pt",
)
image_size = gr.Slider(
label="Image Size",
minimum=320,
maximum=1280,
step=32,
value=640,
)
conf_threshold = gr.Slider(
label="Confidence Threshold",
minimum=0.1,
maximum=1.0,
step=0.1,
value=0.25,
)
iou_threshold = gr.Slider(
label="IoU Threshold",
minimum=0.1,
maximum=1.0,
step=0.1,
value=0.45,
)
yolov10_infer = gr.Button(value="Detect Objects")
with gr.Column():
output_image = gr.Image(type="numpy", label="Annotated Image")
yolov10_infer.click(
fn=yolov10_inference,
inputs=[
image,
model_id,
image_size,
conf_threshold,
iou_threshold,
],
outputs=[output_image],
)
gradio_app = gr.Blocks()
with gradio_app:
gr.HTML(
"""
<h1 style='text-align: center'>
YOLOv10: Real-Time End-to-End Object Detection
</h1>
""")
gr.HTML(
"""
<h3 style='text-align: center'>
Baru testing!
</h3>
""")
with gr.Row():
with gr.Column():
app()
gradio_app.launch(debug=True)