import gradio as gr from roboflow import Roboflow import supervision as sv import cv2 from ultralytics import YOLOv10 import spaces from huggingface_hub import hf_hub_download def download_models(model_id): hf_hub_download("faruqaziz/deteksi-beras", filename=f"{model_id}", local_dir=f"./") return f"./{model_id}" box_annotator = sv.BoxAnnotator() category_dict = {0: 'arborio', 1: 'basmati', 2: 'ipsala', 3: 'jasmine', 4: 'karacadag'} @spaces.GPU(duration=200) def yolov10_inference(image, model_id, image_size, conf_threshold, iou_threshold): model_path = download_models(model_id) model = YOLOv10(model_path) results = model(source=image, imgsz=image_size, iou=iou_threshold, conf=conf_threshold, verbose=False)[0] detections = sv.Detections.from_ultralytics(results) labels = [ f"{category_dict[class_id]} {confidence:.2f}" for class_id, confidence in zip(detections.class_id, detections.confidence) ] annotated_image = box_annotator.annotate(image, detections=detections, labels=labels) return annotated_image def app(): with gr.Blocks(): with gr.Row(): with gr.Column(): image = gr.Image(type="numpy", label="Image") model_id = gr.Dropdown( label="Model", choices=[ "best.pt", "last.pt", ], value="best.pt", ) image_size = gr.Slider( label="Image Size", minimum=320, maximum=1280, step=32, value=640, ) conf_threshold = gr.Slider( label="Confidence Threshold", minimum=0.1, maximum=1.0, step=0.1, value=0.25, ) iou_threshold = gr.Slider( label="IoU Threshold", minimum=0.1, maximum=1.0, step=0.1, value=0.45, ) yolov10_infer = gr.Button(value="Detect Objects") with gr.Column(): output_image = gr.Image(type="numpy", label="Annotated Image") yolov10_infer.click( fn=yolov10_inference, inputs=[ image, model_id, image_size, conf_threshold, iou_threshold, ], outputs=[output_image], ) gradio_app = gr.Blocks() with gradio_app: gr.HTML( """ <h1 style='text-align: center'> YOLOv10: Real-Time End-to-End Object Detection </h1> """) gr.HTML( """ <h3 style='text-align: center'> Baru testing! </h3> """) with gr.Row(): with gr.Column(): app() gradio_app.launch(debug=True)