V-Express / pipelines /v_express_pipeline.py
faraday's picture
zero GPU
88590fc
# Adapted from https://github.com/magic-research/magic-animate/blob/main/magicanimate/pipelines/pipeline_animation.py
import inspect
import math
from dataclasses import dataclass
from typing import Callable, List, Optional, Union
import numpy as np
import torch
from diffusers import DiffusionPipeline
from diffusers.image_processor import VaeImageProcessor
from diffusers.schedulers import (
DDIMScheduler,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
)
from diffusers.utils import BaseOutput, is_accelerate_available
from diffusers.utils.torch_utils import randn_tensor
from einops import rearrange
from tqdm import tqdm
from transformers import CLIPImageProcessor
from modules import ReferenceAttentionControl
from .context import get_context_scheduler
from .utils import get_tensor_interpolation_method
def retrieve_timesteps(
scheduler,
num_inference_steps: Optional[int] = None,
device: Optional[Union[str, torch.device]] = None,
timesteps: Optional[List[int]] = None,
**kwargs,
):
"""
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
Args:
scheduler (`SchedulerMixin`):
The scheduler to get timesteps from.
num_inference_steps (`int`):
The number of diffusion steps used when generating samples with a pre-trained model. If used,
`timesteps` must be `None`.
device (`str` or `torch.device`, *optional*):
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
timesteps (`List[int]`, *optional*):
Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps`
must be `None`.
Returns:
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
second element is the number of inference steps.
"""
if timesteps is not None:
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
if not accepts_timesteps:
raise ValueError(
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
f" timestep schedules. Please check whether you are using the correct scheduler."
)
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
else:
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
timesteps = scheduler.timesteps
return timesteps, num_inference_steps
@dataclass
class PipelineOutput(BaseOutput):
video_latents: Union[torch.Tensor, np.ndarray]
class VExpressPipeline(DiffusionPipeline):
_optional_components = []
def __init__(
self,
vae,
reference_net,
denoising_unet,
v_kps_guider,
audio_processor,
audio_encoder,
audio_projection,
scheduler: Union[
DDIMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
],
image_proj_model=None,
tokenizer=None,
text_encoder=None,
):
super().__init__()
self.register_modules(
vae=vae,
reference_net=reference_net,
denoising_unet=denoising_unet,
v_kps_guider=v_kps_guider,
audio_processor=audio_processor,
audio_encoder=audio_encoder,
audio_projection=audio_projection,
scheduler=scheduler,
image_proj_model=image_proj_model,
tokenizer=tokenizer,
text_encoder=text_encoder,
)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
self.clip_image_processor = CLIPImageProcessor()
self.reference_image_processor = VaeImageProcessor(
vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True
)
self.condition_image_processor = VaeImageProcessor(
vae_scale_factor=self.vae_scale_factor,
do_convert_rgb=True,
do_normalize=False,
)
def enable_vae_slicing(self):
self.vae.enable_slicing()
def disable_vae_slicing(self):
self.vae.disable_slicing()
def enable_sequential_cpu_offload(self, gpu_id=0):
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError("Please install accelerate via `pip install accelerate`")
device = torch.device(f"cuda:{gpu_id}")
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]:
if cpu_offloaded_model is not None:
cpu_offload(cpu_offloaded_model, device)
@property
def _execution_device(self):
if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"):
return self.device
for module in self.unet.modules():
if (
hasattr(module, "_hf_hook")
and hasattr(module._hf_hook, "execution_device")
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device)
return self.device
@torch.no_grad()
def decode_latents(self, latents):
video_length = latents.shape[2]
latents = 1 / 0.18215 * latents
latents = rearrange(latents, "b c f h w -> (b f) c h w")
# video = self.vae.decode(latents).sample
video = []
for frame_idx in tqdm(range(latents.shape[0])):
image = self.vae.decode(latents[frame_idx: frame_idx + 1].to(self.vae.device)).sample
video.append(image)
video = torch.cat(video)
video = rearrange(video, "(b f) c h w -> b c f h w", f=video_length)
video = (video / 2 + 0.5).clamp(0, 1)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
video = video.cpu().float().numpy()
return video
def prepare_extra_step_kwargs(self, generator, eta):
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(
inspect.signature(self.scheduler.step).parameters.keys()
)
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
# check if the scheduler accepts generator
accepts_generator = "generator" in set(
inspect.signature(self.scheduler.step).parameters.keys()
)
if accepts_generator:
extra_step_kwargs["generator"] = generator
return extra_step_kwargs
def prepare_latents(
self,
batch_size,
num_channels_latents,
width,
height,
video_length,
dtype,
device,
generator,
latents=None
):
shape = (
batch_size,
num_channels_latents,
video_length,
height // self.vae_scale_factor,
width // self.vae_scale_factor,
)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
if latents is None:
latents = randn_tensor(
shape, generator=generator, device=device, dtype=dtype
)
else:
latents = latents.to(device)
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * self.scheduler.init_noise_sigma
return latents
def _encode_prompt(
self,
prompt,
device,
num_videos_per_prompt,
do_classifier_free_guidance,
negative_prompt,
):
batch_size = len(prompt) if isinstance(prompt, list) else 1
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
untruncated_ids = self.tokenizer(
prompt, padding="longest", return_tensors="pt"
).input_ids
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
text_input_ids, untruncated_ids
):
removed_text = self.tokenizer.batch_decode(
untruncated_ids[:, self.tokenizer.model_max_length - 1: -1]
)
if (
hasattr(self.text_encoder.config, "use_attention_mask")
and self.text_encoder.config.use_attention_mask
):
attention_mask = text_inputs.attention_mask.to(device)
else:
attention_mask = None
text_embeddings = self.text_encoder(
text_input_ids.to(device),
attention_mask=attention_mask,
)
text_embeddings = text_embeddings[0]
# duplicate text embeddings for each generation per prompt, using mps friendly method
bs_embed, seq_len, _ = text_embeddings.shape
text_embeddings = text_embeddings.repeat(1, num_videos_per_prompt, 1)
text_embeddings = text_embeddings.view(
bs_embed * num_videos_per_prompt, seq_len, -1
)
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
uncond_tokens: List[str]
if negative_prompt is None:
uncond_tokens = [""] * batch_size
elif type(prompt) is not type(negative_prompt):
raise TypeError(
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
f" {type(prompt)}."
)
elif isinstance(negative_prompt, str):
uncond_tokens = [negative_prompt]
elif batch_size != len(negative_prompt):
raise ValueError(
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
" the batch size of `prompt`."
)
else:
uncond_tokens = negative_prompt
max_length = text_input_ids.shape[-1]
uncond_input = self.tokenizer(
uncond_tokens,
padding="max_length",
max_length=max_length,
truncation=True,
return_tensors="pt",
)
if (
hasattr(self.text_encoder.config, "use_attention_mask")
and self.text_encoder.config.use_attention_mask
):
attention_mask = uncond_input.attention_mask.to(device)
else:
attention_mask = None
uncond_embeddings = self.text_encoder(
uncond_input.input_ids.to(device),
attention_mask=attention_mask,
)
uncond_embeddings = uncond_embeddings[0]
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
seq_len = uncond_embeddings.shape[1]
uncond_embeddings = uncond_embeddings.repeat(1, num_videos_per_prompt, 1)
uncond_embeddings = uncond_embeddings.view(
batch_size * num_videos_per_prompt, seq_len, -1
)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
return text_embeddings
def interpolate_latents(
self, latents: torch.Tensor, interpolation_factor: int, device
):
if interpolation_factor < 2:
return latents
new_latents = torch.zeros(
(
latents.shape[0],
latents.shape[1],
((latents.shape[2] - 1) * interpolation_factor) + 1,
latents.shape[3],
latents.shape[4],
),
device=latents.device,
dtype=latents.dtype,
)
org_video_length = latents.shape[2]
rate = [i / interpolation_factor for i in range(interpolation_factor)][1:]
new_index = 0
v0 = None
v1 = None
for i0, i1 in zip(range(org_video_length), range(org_video_length)[1:]):
v0 = latents[:, :, i0, :, :]
v1 = latents[:, :, i1, :, :]
new_latents[:, :, new_index, :, :] = v0
new_index += 1
for f in rate:
v = get_tensor_interpolation_method()(
v0.to(device=device), v1.to(device=device), f
)
new_latents[:, :, new_index, :, :] = v.to(latents.device)
new_index += 1
new_latents[:, :, new_index, :, :] = v1
new_index += 1
return new_latents
def get_timesteps(self, num_inference_steps, strength, device):
# get the original timestep using init_timestep
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
t_start = max(num_inference_steps - init_timestep, 0)
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order:]
return timesteps, num_inference_steps - t_start
def prepare_reference_latent(self, reference_image, height, width):
reference_image_tensor = self.reference_image_processor.preprocess(reference_image, height=height, width=width)
reference_image_tensor = reference_image_tensor.to(dtype=self.dtype, device=self.device)
reference_image_latents = self.vae.encode(reference_image_tensor).latent_dist.mean
reference_image_latents = reference_image_latents * 0.18215
return reference_image_latents
def prepare_kps_feature(self, kps_images, height, width, do_classifier_free_guidance):
kps_image_tensors = []
for idx, kps_image in enumerate(kps_images):
kps_image_tensor = self.condition_image_processor.preprocess(kps_image, height=height, width=width)
kps_image_tensor = kps_image_tensor.unsqueeze(2) # [bs, c, 1, h, w]
kps_image_tensors.append(kps_image_tensor)
kps_images_tensor = torch.cat(kps_image_tensors, dim=2) # [bs, c, t, h, w]
kps_images_tensor = kps_images_tensor.to(device=self.device, dtype=self.dtype)
kps_feature = self.v_kps_guider(kps_images_tensor)
if do_classifier_free_guidance:
uc_kps_feature = torch.zeros_like(kps_feature)
kps_feature = torch.cat([uc_kps_feature, kps_feature], dim=0)
return kps_feature
def prepare_audio_embeddings(self, audio_waveform, video_length, num_pad_audio_frames, do_classifier_free_guidance):
audio_waveform = self.audio_processor(audio_waveform, return_tensors="pt", sampling_rate=16000)['input_values']
audio_waveform = audio_waveform.to(self.device, self.dtype)
audio_embeddings = self.audio_encoder(audio_waveform).last_hidden_state # [1, num_embeds, d]
audio_embeddings = torch.nn.functional.interpolate(
audio_embeddings.permute(0, 2, 1),
size=2 * video_length,
mode='linear',
)[0, :, :].permute(1, 0) # [2*vid_len, dim]
audio_embeddings = torch.cat([
torch.zeros_like(audio_embeddings)[:2 * num_pad_audio_frames, :],
audio_embeddings,
torch.zeros_like(audio_embeddings)[:2 * num_pad_audio_frames, :],
], dim=0) # [2*num_pad+2*vid_len+2*num_pad, dim]
frame_audio_embeddings = []
for frame_idx in range(video_length):
start_sample = frame_idx
end_sample = frame_idx + 2 * num_pad_audio_frames
frame_audio_embedding = audio_embeddings[2 * start_sample:2 * (end_sample + 1), :] # [2*num_pad+1, dim]
frame_audio_embeddings.append(frame_audio_embedding)
audio_embeddings = torch.stack(frame_audio_embeddings, dim=0) # [vid_len, 2*num_pad+1, dim]
audio_embeddings = self.audio_projection(audio_embeddings).unsqueeze(0)
if do_classifier_free_guidance:
uc_audio_embeddings = torch.zeros_like(audio_embeddings)
audio_embeddings = torch.cat([uc_audio_embeddings, audio_embeddings], dim=0)
return audio_embeddings
@torch.no_grad()
def __call__(
self,
vae_latents,
reference_image,
kps_images,
audio_waveform,
width,
height,
video_length,
num_inference_steps,
guidance_scale,
strength=1.,
num_images_per_prompt=1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
output_type: Optional[str] = "tensor",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: Optional[int] = 1,
context_schedule="uniform",
context_frames=24,
context_stride=1,
context_overlap=4,
context_batch_size=1,
interpolation_factor=1,
reference_attention_weight=1.,
audio_attention_weight=1.,
num_pad_audio_frames=2,
**kwargs,
):
# Default height and width to unet
height = height or self.unet.config.sample_size * self.vae_scale_factor
width = width or self.unet.config.sample_size * self.vae_scale_factor
device = self._execution_device
do_classifier_free_guidance = guidance_scale > 1.0
batch_size = 1
# Prepare timesteps
timesteps = None
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device)
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
reference_control_writer = ReferenceAttentionControl(
self.reference_net,
do_classifier_free_guidance=do_classifier_free_guidance,
mode="write",
batch_size=batch_size,
fusion_blocks="full",
)
reference_control_reader = ReferenceAttentionControl(
self.denoising_unet,
do_classifier_free_guidance=do_classifier_free_guidance,
mode="read",
batch_size=batch_size,
fusion_blocks="full",
reference_attention_weight=reference_attention_weight,
audio_attention_weight=audio_attention_weight,
)
num_channels_latents = self.denoising_unet.in_channels
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
width,
height,
video_length,
self.dtype,
device,
generator
)
latents = self.scheduler.add_noise(vae_latents, latents, latent_timestep)
# Prepare extra step kwargs.
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
reference_image_latents = self.prepare_reference_latent(reference_image, height, width)
kps_feature = self.prepare_kps_feature(kps_images, height, width, do_classifier_free_guidance)
audio_embeddings = self.prepare_audio_embeddings(
audio_waveform,
video_length,
num_pad_audio_frames,
do_classifier_free_guidance,
)
context_scheduler = get_context_scheduler(context_schedule)
# denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
noise_pred = torch.zeros(
(
latents.shape[0] * (2 if do_classifier_free_guidance else 1),
*latents.shape[1:],
),
device=latents.device,
dtype=latents.dtype,
)
counter = torch.zeros(
(1, 1, latents.shape[2], 1, 1),
device=latents.device,
dtype=latents.dtype,
)
# 1. Forward reference image
if i == 0:
encoder_hidden_states = torch.zeros((1, 1, 768), dtype=self.dtype, device=self.device)
self.reference_net(
reference_image_latents,
torch.zeros_like(t),
encoder_hidden_states=encoder_hidden_states,
return_dict=False,
)
context_queue = list(
context_scheduler(
0,
num_inference_steps,
latents.shape[2],
context_frames,
context_stride,
context_overlap,
)
)
num_context_batches = math.ceil(len(context_queue) / context_batch_size)
global_context = []
for i in range(num_context_batches):
global_context.append(context_queue[i * context_batch_size: (i + 1) * context_batch_size])
for context in global_context:
# 3.1 expand the latents if we are doing classifier free guidance
latent_model_input = (
torch.cat([latents[:, :, c] for c in context])
.to(device)
.repeat(2 if do_classifier_free_guidance else 1, 1, 1, 1, 1)
)
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
latent_kps_feature = torch.cat([kps_feature[:, :, c] for c in context])
latent_audio_embeddings = torch.cat([audio_embeddings[:, c, ...] for c in context], dim=0)
_, _, num_tokens, dim = latent_audio_embeddings.shape
latent_audio_embeddings = latent_audio_embeddings.reshape(-1, num_tokens, dim)
reference_control_reader.update(reference_control_writer, do_classifier_free_guidance)
pred = self.denoising_unet(
latent_model_input,
t,
encoder_hidden_states=latent_audio_embeddings.reshape(-1, num_tokens, dim),
kps_features=latent_kps_feature,
return_dict=False,
)[0]
for j, c in enumerate(context):
noise_pred[:, :, c] = noise_pred[:, :, c] + pred
counter[:, :, c] = counter[:, :, c] + 1
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = (noise_pred / counter).chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
step_idx = i // getattr(self.scheduler, "order", 1)
callback(step_idx, t, latents)
reference_control_reader.clear()
reference_control_writer.clear()
if interpolation_factor > 0:
latents = self.interpolate_latents(latents, interpolation_factor, device)
# Convert to tensor
if output_type == "tensor":
latents = latents
if not return_dict:
return latents
return PipelineOutput(video_latents=latents)