File size: 25,755 Bytes
88590fc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 |
# Adapted from https://github.com/magic-research/magic-animate/blob/main/magicanimate/pipelines/pipeline_animation.py
import inspect
import math
from dataclasses import dataclass
from typing import Callable, List, Optional, Union
import numpy as np
import torch
from diffusers import DiffusionPipeline
from diffusers.image_processor import VaeImageProcessor
from diffusers.schedulers import (
DDIMScheduler,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
)
from diffusers.utils import BaseOutput, is_accelerate_available
from diffusers.utils.torch_utils import randn_tensor
from einops import rearrange
from tqdm import tqdm
from transformers import CLIPImageProcessor
from modules import ReferenceAttentionControl
from .context import get_context_scheduler
from .utils import get_tensor_interpolation_method
def retrieve_timesteps(
scheduler,
num_inference_steps: Optional[int] = None,
device: Optional[Union[str, torch.device]] = None,
timesteps: Optional[List[int]] = None,
**kwargs,
):
"""
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
Args:
scheduler (`SchedulerMixin`):
The scheduler to get timesteps from.
num_inference_steps (`int`):
The number of diffusion steps used when generating samples with a pre-trained model. If used,
`timesteps` must be `None`.
device (`str` or `torch.device`, *optional*):
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
timesteps (`List[int]`, *optional*):
Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps`
must be `None`.
Returns:
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
second element is the number of inference steps.
"""
if timesteps is not None:
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
if not accepts_timesteps:
raise ValueError(
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
f" timestep schedules. Please check whether you are using the correct scheduler."
)
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
timesteps = scheduler.timesteps
num_inference_steps = len(timesteps)
else:
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
timesteps = scheduler.timesteps
return timesteps, num_inference_steps
@dataclass
class PipelineOutput(BaseOutput):
video_latents: Union[torch.Tensor, np.ndarray]
class VExpressPipeline(DiffusionPipeline):
_optional_components = []
def __init__(
self,
vae,
reference_net,
denoising_unet,
v_kps_guider,
audio_processor,
audio_encoder,
audio_projection,
scheduler: Union[
DDIMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
],
image_proj_model=None,
tokenizer=None,
text_encoder=None,
):
super().__init__()
self.register_modules(
vae=vae,
reference_net=reference_net,
denoising_unet=denoising_unet,
v_kps_guider=v_kps_guider,
audio_processor=audio_processor,
audio_encoder=audio_encoder,
audio_projection=audio_projection,
scheduler=scheduler,
image_proj_model=image_proj_model,
tokenizer=tokenizer,
text_encoder=text_encoder,
)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
self.clip_image_processor = CLIPImageProcessor()
self.reference_image_processor = VaeImageProcessor(
vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True
)
self.condition_image_processor = VaeImageProcessor(
vae_scale_factor=self.vae_scale_factor,
do_convert_rgb=True,
do_normalize=False,
)
def enable_vae_slicing(self):
self.vae.enable_slicing()
def disable_vae_slicing(self):
self.vae.disable_slicing()
def enable_sequential_cpu_offload(self, gpu_id=0):
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError("Please install accelerate via `pip install accelerate`")
device = torch.device(f"cuda:{gpu_id}")
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]:
if cpu_offloaded_model is not None:
cpu_offload(cpu_offloaded_model, device)
@property
def _execution_device(self):
if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"):
return self.device
for module in self.unet.modules():
if (
hasattr(module, "_hf_hook")
and hasattr(module._hf_hook, "execution_device")
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device)
return self.device
@torch.no_grad()
def decode_latents(self, latents):
video_length = latents.shape[2]
latents = 1 / 0.18215 * latents
latents = rearrange(latents, "b c f h w -> (b f) c h w")
# video = self.vae.decode(latents).sample
video = []
for frame_idx in tqdm(range(latents.shape[0])):
image = self.vae.decode(latents[frame_idx: frame_idx + 1].to(self.vae.device)).sample
video.append(image)
video = torch.cat(video)
video = rearrange(video, "(b f) c h w -> b c f h w", f=video_length)
video = (video / 2 + 0.5).clamp(0, 1)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
video = video.cpu().float().numpy()
return video
def prepare_extra_step_kwargs(self, generator, eta):
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(
inspect.signature(self.scheduler.step).parameters.keys()
)
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
# check if the scheduler accepts generator
accepts_generator = "generator" in set(
inspect.signature(self.scheduler.step).parameters.keys()
)
if accepts_generator:
extra_step_kwargs["generator"] = generator
return extra_step_kwargs
def prepare_latents(
self,
batch_size,
num_channels_latents,
width,
height,
video_length,
dtype,
device,
generator,
latents=None
):
shape = (
batch_size,
num_channels_latents,
video_length,
height // self.vae_scale_factor,
width // self.vae_scale_factor,
)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
if latents is None:
latents = randn_tensor(
shape, generator=generator, device=device, dtype=dtype
)
else:
latents = latents.to(device)
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * self.scheduler.init_noise_sigma
return latents
def _encode_prompt(
self,
prompt,
device,
num_videos_per_prompt,
do_classifier_free_guidance,
negative_prompt,
):
batch_size = len(prompt) if isinstance(prompt, list) else 1
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
untruncated_ids = self.tokenizer(
prompt, padding="longest", return_tensors="pt"
).input_ids
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
text_input_ids, untruncated_ids
):
removed_text = self.tokenizer.batch_decode(
untruncated_ids[:, self.tokenizer.model_max_length - 1: -1]
)
if (
hasattr(self.text_encoder.config, "use_attention_mask")
and self.text_encoder.config.use_attention_mask
):
attention_mask = text_inputs.attention_mask.to(device)
else:
attention_mask = None
text_embeddings = self.text_encoder(
text_input_ids.to(device),
attention_mask=attention_mask,
)
text_embeddings = text_embeddings[0]
# duplicate text embeddings for each generation per prompt, using mps friendly method
bs_embed, seq_len, _ = text_embeddings.shape
text_embeddings = text_embeddings.repeat(1, num_videos_per_prompt, 1)
text_embeddings = text_embeddings.view(
bs_embed * num_videos_per_prompt, seq_len, -1
)
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
uncond_tokens: List[str]
if negative_prompt is None:
uncond_tokens = [""] * batch_size
elif type(prompt) is not type(negative_prompt):
raise TypeError(
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
f" {type(prompt)}."
)
elif isinstance(negative_prompt, str):
uncond_tokens = [negative_prompt]
elif batch_size != len(negative_prompt):
raise ValueError(
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
" the batch size of `prompt`."
)
else:
uncond_tokens = negative_prompt
max_length = text_input_ids.shape[-1]
uncond_input = self.tokenizer(
uncond_tokens,
padding="max_length",
max_length=max_length,
truncation=True,
return_tensors="pt",
)
if (
hasattr(self.text_encoder.config, "use_attention_mask")
and self.text_encoder.config.use_attention_mask
):
attention_mask = uncond_input.attention_mask.to(device)
else:
attention_mask = None
uncond_embeddings = self.text_encoder(
uncond_input.input_ids.to(device),
attention_mask=attention_mask,
)
uncond_embeddings = uncond_embeddings[0]
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
seq_len = uncond_embeddings.shape[1]
uncond_embeddings = uncond_embeddings.repeat(1, num_videos_per_prompt, 1)
uncond_embeddings = uncond_embeddings.view(
batch_size * num_videos_per_prompt, seq_len, -1
)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
return text_embeddings
def interpolate_latents(
self, latents: torch.Tensor, interpolation_factor: int, device
):
if interpolation_factor < 2:
return latents
new_latents = torch.zeros(
(
latents.shape[0],
latents.shape[1],
((latents.shape[2] - 1) * interpolation_factor) + 1,
latents.shape[3],
latents.shape[4],
),
device=latents.device,
dtype=latents.dtype,
)
org_video_length = latents.shape[2]
rate = [i / interpolation_factor for i in range(interpolation_factor)][1:]
new_index = 0
v0 = None
v1 = None
for i0, i1 in zip(range(org_video_length), range(org_video_length)[1:]):
v0 = latents[:, :, i0, :, :]
v1 = latents[:, :, i1, :, :]
new_latents[:, :, new_index, :, :] = v0
new_index += 1
for f in rate:
v = get_tensor_interpolation_method()(
v0.to(device=device), v1.to(device=device), f
)
new_latents[:, :, new_index, :, :] = v.to(latents.device)
new_index += 1
new_latents[:, :, new_index, :, :] = v1
new_index += 1
return new_latents
def get_timesteps(self, num_inference_steps, strength, device):
# get the original timestep using init_timestep
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
t_start = max(num_inference_steps - init_timestep, 0)
timesteps = self.scheduler.timesteps[t_start * self.scheduler.order:]
return timesteps, num_inference_steps - t_start
def prepare_reference_latent(self, reference_image, height, width):
reference_image_tensor = self.reference_image_processor.preprocess(reference_image, height=height, width=width)
reference_image_tensor = reference_image_tensor.to(dtype=self.dtype, device=self.device)
reference_image_latents = self.vae.encode(reference_image_tensor).latent_dist.mean
reference_image_latents = reference_image_latents * 0.18215
return reference_image_latents
def prepare_kps_feature(self, kps_images, height, width, do_classifier_free_guidance):
kps_image_tensors = []
for idx, kps_image in enumerate(kps_images):
kps_image_tensor = self.condition_image_processor.preprocess(kps_image, height=height, width=width)
kps_image_tensor = kps_image_tensor.unsqueeze(2) # [bs, c, 1, h, w]
kps_image_tensors.append(kps_image_tensor)
kps_images_tensor = torch.cat(kps_image_tensors, dim=2) # [bs, c, t, h, w]
kps_images_tensor = kps_images_tensor.to(device=self.device, dtype=self.dtype)
kps_feature = self.v_kps_guider(kps_images_tensor)
if do_classifier_free_guidance:
uc_kps_feature = torch.zeros_like(kps_feature)
kps_feature = torch.cat([uc_kps_feature, kps_feature], dim=0)
return kps_feature
def prepare_audio_embeddings(self, audio_waveform, video_length, num_pad_audio_frames, do_classifier_free_guidance):
audio_waveform = self.audio_processor(audio_waveform, return_tensors="pt", sampling_rate=16000)['input_values']
audio_waveform = audio_waveform.to(self.device, self.dtype)
audio_embeddings = self.audio_encoder(audio_waveform).last_hidden_state # [1, num_embeds, d]
audio_embeddings = torch.nn.functional.interpolate(
audio_embeddings.permute(0, 2, 1),
size=2 * video_length,
mode='linear',
)[0, :, :].permute(1, 0) # [2*vid_len, dim]
audio_embeddings = torch.cat([
torch.zeros_like(audio_embeddings)[:2 * num_pad_audio_frames, :],
audio_embeddings,
torch.zeros_like(audio_embeddings)[:2 * num_pad_audio_frames, :],
], dim=0) # [2*num_pad+2*vid_len+2*num_pad, dim]
frame_audio_embeddings = []
for frame_idx in range(video_length):
start_sample = frame_idx
end_sample = frame_idx + 2 * num_pad_audio_frames
frame_audio_embedding = audio_embeddings[2 * start_sample:2 * (end_sample + 1), :] # [2*num_pad+1, dim]
frame_audio_embeddings.append(frame_audio_embedding)
audio_embeddings = torch.stack(frame_audio_embeddings, dim=0) # [vid_len, 2*num_pad+1, dim]
audio_embeddings = self.audio_projection(audio_embeddings).unsqueeze(0)
if do_classifier_free_guidance:
uc_audio_embeddings = torch.zeros_like(audio_embeddings)
audio_embeddings = torch.cat([uc_audio_embeddings, audio_embeddings], dim=0)
return audio_embeddings
@torch.no_grad()
def __call__(
self,
vae_latents,
reference_image,
kps_images,
audio_waveform,
width,
height,
video_length,
num_inference_steps,
guidance_scale,
strength=1.,
num_images_per_prompt=1,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
output_type: Optional[str] = "tensor",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: Optional[int] = 1,
context_schedule="uniform",
context_frames=24,
context_stride=1,
context_overlap=4,
context_batch_size=1,
interpolation_factor=1,
reference_attention_weight=1.,
audio_attention_weight=1.,
num_pad_audio_frames=2,
**kwargs,
):
# Default height and width to unet
height = height or self.unet.config.sample_size * self.vae_scale_factor
width = width or self.unet.config.sample_size * self.vae_scale_factor
device = self._execution_device
do_classifier_free_guidance = guidance_scale > 1.0
batch_size = 1
# Prepare timesteps
timesteps = None
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device)
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
reference_control_writer = ReferenceAttentionControl(
self.reference_net,
do_classifier_free_guidance=do_classifier_free_guidance,
mode="write",
batch_size=batch_size,
fusion_blocks="full",
)
reference_control_reader = ReferenceAttentionControl(
self.denoising_unet,
do_classifier_free_guidance=do_classifier_free_guidance,
mode="read",
batch_size=batch_size,
fusion_blocks="full",
reference_attention_weight=reference_attention_weight,
audio_attention_weight=audio_attention_weight,
)
num_channels_latents = self.denoising_unet.in_channels
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
width,
height,
video_length,
self.dtype,
device,
generator
)
latents = self.scheduler.add_noise(vae_latents, latents, latent_timestep)
# Prepare extra step kwargs.
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
reference_image_latents = self.prepare_reference_latent(reference_image, height, width)
kps_feature = self.prepare_kps_feature(kps_images, height, width, do_classifier_free_guidance)
audio_embeddings = self.prepare_audio_embeddings(
audio_waveform,
video_length,
num_pad_audio_frames,
do_classifier_free_guidance,
)
context_scheduler = get_context_scheduler(context_schedule)
# denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
noise_pred = torch.zeros(
(
latents.shape[0] * (2 if do_classifier_free_guidance else 1),
*latents.shape[1:],
),
device=latents.device,
dtype=latents.dtype,
)
counter = torch.zeros(
(1, 1, latents.shape[2], 1, 1),
device=latents.device,
dtype=latents.dtype,
)
# 1. Forward reference image
if i == 0:
encoder_hidden_states = torch.zeros((1, 1, 768), dtype=self.dtype, device=self.device)
self.reference_net(
reference_image_latents,
torch.zeros_like(t),
encoder_hidden_states=encoder_hidden_states,
return_dict=False,
)
context_queue = list(
context_scheduler(
0,
num_inference_steps,
latents.shape[2],
context_frames,
context_stride,
context_overlap,
)
)
num_context_batches = math.ceil(len(context_queue) / context_batch_size)
global_context = []
for i in range(num_context_batches):
global_context.append(context_queue[i * context_batch_size: (i + 1) * context_batch_size])
for context in global_context:
# 3.1 expand the latents if we are doing classifier free guidance
latent_model_input = (
torch.cat([latents[:, :, c] for c in context])
.to(device)
.repeat(2 if do_classifier_free_guidance else 1, 1, 1, 1, 1)
)
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
latent_kps_feature = torch.cat([kps_feature[:, :, c] for c in context])
latent_audio_embeddings = torch.cat([audio_embeddings[:, c, ...] for c in context], dim=0)
_, _, num_tokens, dim = latent_audio_embeddings.shape
latent_audio_embeddings = latent_audio_embeddings.reshape(-1, num_tokens, dim)
reference_control_reader.update(reference_control_writer, do_classifier_free_guidance)
pred = self.denoising_unet(
latent_model_input,
t,
encoder_hidden_states=latent_audio_embeddings.reshape(-1, num_tokens, dim),
kps_features=latent_kps_feature,
return_dict=False,
)[0]
for j, c in enumerate(context):
noise_pred[:, :, c] = noise_pred[:, :, c] + pred
counter[:, :, c] = counter[:, :, c] + 1
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = (noise_pred / counter).chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
step_idx = i // getattr(self.scheduler, "order", 1)
callback(step_idx, t, latents)
reference_control_reader.clear()
reference_control_writer.clear()
if interpolation_factor > 0:
latents = self.interpolate_latents(latents, interpolation_factor, device)
# Convert to tensor
if output_type == "tensor":
latents = latents
if not return_dict:
return latents
return PipelineOutput(video_latents=latents)
|