Spaces:
Sleeping
Sleeping
import os | |
# Install missing libraries | |
os.system("pip install transformers torch") | |
from transformers import pipeline | |
import gradio as gr | |
# Load the model | |
classifier = pipeline("image-classification", model="umutbozdag/plant-identity") | |
# Your existing Gradio app code goes here... | |
import gradio as gr | |
from transformers import pipeline | |
# Load the model from Hugging Face | |
classifier = pipeline("image-classification", model="umutbozdag/plant-identity") | |
# Link to the first project (PlantInfo1) | |
plant_info_url = "https://huggingface.co/spaces/NoufSaleh46/PlantInfo1" | |
# Dictionary containing basic plant information | |
plant_info = { | |
"Sunflower": "Sunflowers are tall plants known for their large, bright yellow flowers.", | |
"Rose": "Roses are flowering plants known for their beauty and fragrance.", | |
"Dandelion": "Dandelions are common wild plants with bright yellow flowers.", | |
"Tulip": "Tulips are brightly colored flowers that bloom in the spring.", | |
"Daisy": "Daisies are small, simple flowers with white petals and a yellow center." | |
} | |
# Function to classify the plant image and provide information | |
def classify_plant_with_info(image): | |
result = classifier(image) | |
plant_name = result[0]["label"] | |
info = plant_info.get(plant_name, "No detailed information available.") | |
link = f"[Learn More About {plant_name}]({plant_info_url})" | |
return plant_name, info, link | |
# Custom CSS for styling | |
css = """ | |
body {background-color: #0a0f1c;} | |
h1 {color: #ffffff; text-align: center; font-size: 28px;} | |
p {color: #b0b3b8; text-align: center; font-size: 16px;} | |
.gr-button {background-color: #6366f1; color: white; border-radius: 10px; font-size: 18px; padding: 12px;} | |
.gr-box {border-radius: 10px; background-color: #161b2b; padding: 15px; color: white;} | |
.gr-textbox {color: white;} | |
.gr-row {justify-content: center;} | |
""" | |
# Gradio Interface | |
with gr.Blocks(css=css) as demo: | |
gr.Markdown("<h1>π± AI Plant Identification πΏ</h1>") | |
gr.Markdown("<p>Upload a plant image and let AI identify it! β¨</p>") | |
with gr.Row(): | |
with gr.Column(): | |
image_input = gr.Image(type="pil", label="πΈ Upload Plant Image") | |
with gr.Column(): | |
output = gr.Textbox(label="π Plant Name", interactive=False) | |
info_output = gr.Textbox(label="π Plant Information", interactive=False) | |
link_output = gr.Markdown() | |
classify_btn = gr.Button("π Identify Plant") | |
classify_btn.click(classify_plant_with_info, inputs=image_input, outputs=[output, info_output, link_output]) | |
# Launch the app | |
demo.launch() | |