import os # Install missing libraries os.system("pip install transformers torch") from transformers import pipeline import gradio as gr # Load the model classifier = pipeline("image-classification", model="umutbozdag/plant-identity") # Your existing Gradio app code goes here... import gradio as gr from transformers import pipeline # Load the model from Hugging Face classifier = pipeline("image-classification", model="umutbozdag/plant-identity") # Link to the first project (PlantInfo1) plant_info_url = "https://huggingface.co/spaces/NoufSaleh46/PlantInfo1" # Dictionary containing basic plant information plant_info = { "Sunflower": "Sunflowers are tall plants known for their large, bright yellow flowers.", "Rose": "Roses are flowering plants known for their beauty and fragrance.", "Dandelion": "Dandelions are common wild plants with bright yellow flowers.", "Tulip": "Tulips are brightly colored flowers that bloom in the spring.", "Daisy": "Daisies are small, simple flowers with white petals and a yellow center." } # Function to classify the plant image and provide information def classify_plant_with_info(image): result = classifier(image) plant_name = result[0]["label"] info = plant_info.get(plant_name, "No detailed information available.") link = f"[Learn More About {plant_name}]({plant_info_url})" return plant_name, info, link # Custom CSS for styling css = """ body {background-color: #0a0f1c;} h1 {color: #ffffff; text-align: center; font-size: 28px;} p {color: #b0b3b8; text-align: center; font-size: 16px;} .gr-button {background-color: #6366f1; color: white; border-radius: 10px; font-size: 18px; padding: 12px;} .gr-box {border-radius: 10px; background-color: #161b2b; padding: 15px; color: white;} .gr-textbox {color: white;} .gr-row {justify-content: center;} """ # Gradio Interface with gr.Blocks(css=css) as demo: gr.Markdown("

🌱 AI Plant Identification 🌿

") gr.Markdown("

Upload a plant image and let AI identify it! ✨

") with gr.Row(): with gr.Column(): image_input = gr.Image(type="pil", label="📸 Upload Plant Image") with gr.Column(): output = gr.Textbox(label="🔍 Plant Name", interactive=False) info_output = gr.Textbox(label="📖 Plant Information", interactive=False) link_output = gr.Markdown() classify_btn = gr.Button("🔎 Identify Plant") classify_btn.click(classify_plant_with_info, inputs=image_input, outputs=[output, info_output, link_output]) # Launch the app demo.launch()