Spaces:
Runtime error
Runtime error
File size: 39,304 Bytes
5d396e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 |
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import shap
from sklearn.feature_selection import chi2, SelectKBest, mutual_info_classif, f_classif
from sklearn.metrics import accuracy_score, log_loss, confusion_matrix, f1_score, fbeta_score, roc_auc_score
from sklearn.metrics import ConfusionMatrixDisplay, RocCurveDisplay, classification_report, precision_recall_curve
from sklearn.model_selection import train_test_split, RepeatedStratifiedKFold, cross_val_score, RandomizedSearchCV, StratifiedKFold
from sklearn.preprocessing import OneHotEncoder, OrdinalEncoder, StandardScaler, FunctionTransformer, SplineTransformer, PolynomialFeatures
from sklearn.decomposition import PCA
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import HistGradientBoostingClassifier, GradientBoostingClassifier
# from lightgbm import LGBMClassifier
from sklearn.base import BaseEstimator, TransformerMixin, clone
from sklearn.utils.validation import check_is_fitted
from sklearn.impute import SimpleImputer
from sklearn.pipeline import Pipeline, make_pipeline
from sklearn.compose import ColumnTransformer, make_column_transformer
from lib.transform_data import *
class ClassifierStudy():
"""
A class that contains tools for studying a classifier pipeline
Parameters:
-----------
classifier : a scikit-learn compatible binary classifier
X : pd.DataFrame
dataframe of features
y : pd.Series
series of binary target values corresponding to X
classifier_name : str or None
if provided, will use as classifier name in pipeline
if not, will use 'clf' as name
features : dict
a dictionary whose keys are the feature types
'cyc','cat','ord','num','bin' and whose values
are lists of features of each type.
Methods:
-------
set_data, set_features, set_state
sets or resets attributes of self
build_pipeline
builds out pipeline based on supplied specs
cv_score
runs k-fold cross validation and reports scores
randomized_search
runs randomized search with cross validation
and reports results
fit_pipeline
fits the model pipeline and stores as
self.pipe_fitted
predict_proba_pipeline
uses a fitted pipeline to compute predicted
probabilities for test or validation set
score_pipeline
scores predicted probabilities
"""
def __init__(self, classifier=None, X = None, y = None,
features = None,classifier_name = None,
random_state=42):
self.classifier = classifier
if X is not None:
self.X = X.copy()
if y is not None:
self.y = y.copy()
if features is not None:
self.features = features.copy()
self.random_state=random_state
self.pipe, self.pipe_fitted = None, None
self.classifier_name = classifier_name
self.X_val, self.y_val = None, None
self.y_predict_proba = None
self.best_params, self.best_n_components = None, None
self.shap_vals = None
def set_data(self,X=None,y=None):
"""Method to set or reset feature and/or target data"""
if X is not None:
self.X = X.copy()
if y is not None:
self.y = y.copy()
def set_features(self,features):
"""Method to set or reset the feature dictionary"""
if features is not None:
self.features = features.copy()
def set_state(self,random_state):
"""Method to set or reset the random_state"""
self.random_state = random_state
def build_pipeline(self, cat_method = 'onehot',cyc_method = 'spline',num_ss=True,
over_sample = False, pca=False,n_components=None,
select_features = False,score_func=None,k='all',
poly_features = False, degree=2, interaction_only=False):
"""
Method to build the model pipeline
Parameters:
-----------
cat_method : str
specifies whether to encode categorical
variables as one-hot vectors or ordinals
must be either 'onehot' or 'ord'
cyc_method : str
specifies whether to encode cyclical features
with sine/cosine encoding or periodic splines
must be one of 'trig', 'spline', 'interact-trig',
'interact-spline','onehot', 'ord', or None
- If 'trig' or 'spline', will set up periodic encoder
with desired method
- If 'onehot' or 'ord', will set up appropriate
categorical encoder
- If 'interact-{method}', will use <method> encoding for HOUR_OF_DAY,
encode DAY_OF_WEEK as a binary feature expressing whether
the day is a weekend day, and then include interaction
features among this set via PolynomialFeatures.
- If None, will leave out cyclical features altogether
num_ss : bool
Whether or not to apply StandardScaler on the numerical features
over_sample : bool
set to True to include imblearn.over_sampling.RandomOverSampler step
pca : bool
set to True to include sklearn.decomposition.PCA step
n_components : int or None
number of components for sklearn.decomposition.PCA
select_features : bool
set to True to include sklearn.feature_selection.SelectKBest step
score_func : callable
score function to use for sklearn.feature_selection.SelectKBest
recommended: chi2, f_classif, or mutual_info_classif
k : int or 'all'
number of features for sklearn.feature_selection.SelectKBest
poly_features : bool
set to True to include sklearn.preprocessing.PolynomialFeatures step
degree : int
max degree for sklearn.preprocessing.PolynomialFeatures
interaction_only : bool
whether or not sklearn.preprocessing.PolynomialFeatures will be limited
to interaction terms only
"""
# Define transformer for categorical features
if cat_method == 'onehot':
cat_encoder = ('ohe',OneHotEncoder(handle_unknown='infrequent_if_exist'))
elif cat_method == 'ord':
cat_encoder = ('oe',OrdinalEncoder(handle_unknown='use_encoded_value',unknown_value=np.nan))
else:
raise ValueError("cat_method must be either 'onehot' or 'ord'")
cat_transform = Pipeline([('si',SimpleImputer(strategy='most_frequent')),cat_encoder])
# Define transformer for cyclic features
cyc_dict = {'HOUR_OF_DAY':24,'DAY_OF_WEEK':7}
if cyc_method == 'trig':
cyc_transform = [(f'{feat}_cos',cos_transformer(cyc_dict[feat]),[feat]) for feat in self.features['cyc']]+\
[(f'{feat}_sin',sin_transformer(cyc_dict[feat]),[feat]) for feat in self.features['cyc']]
elif cyc_method =='spline':
cyc_transform = [(f'{feat}_cyclic',
periodic_spline_transformer(cyc_dict[feat],n_splines=cyc_dict[feat]//2),
[feat]) for feat in self.features['cyc']]
elif cyc_method == 'onehot':
cyc_encoder = ('ohe_cyc',OneHotEncoder(handle_unknown='infrequent_if_exist'))
cyc_transform = [('cyc',Pipeline([cyc_encoder]),self.features['cyc'])]
elif cyc_method == 'ord':
cyc_encoder = ('oe_cyc',OrdinalEncoder(handle_unknown='use_encoded_value',unknown_value=np.nan))
cyc_transform = [('cyc',Pipeline([cyc_encoder]),self.features['cyc'])]
elif cyc_method == 'interact-spline':
hour_transform = (f'hour_cyc',periodic_spline_transformer(cyc_dict['HOUR_OF_DAY'],n_splines=12),['HOUR_OF_DAY'])
wkend_transform = ('wkend',FunctionTransformer(lambda x: (x.isin([1,7])).astype(int)),['DAY_OF_WEEK'])
cyc_transform = [('cyc',Pipeline([('cyc_col',ColumnTransformer([hour_transform, wkend_transform],
remainder='drop',verbose_feature_names_out=False)),
('cyc_poly',PolynomialFeatures(degree=2,interaction_only=True,
include_bias=False))]),
self.features['cyc'])]
elif cyc_method == 'interact-trig':
hour_transform = [(f'HOUR_cos',cos_transformer(cyc_dict['HOUR_OF_DAY']),['HOUR_OF_DAY']),
(f'HOUR_sin',sin_transformer(cyc_dict['HOUR_OF_DAY']),['HOUR_OF_DAY'])]
wkend_transform = ('wkend',FunctionTransformer(lambda x: (x.isin([1,7])).astype(int)),['DAY_OF_WEEK'])
cyc_transform = [('cyc',Pipeline([('cyc_col',ColumnTransformer(hour_transform+[wkend_transform],
remainder='drop',verbose_feature_names_out=False)),
('cyc_poly',PolynomialFeatures(degree=2,interaction_only=True,
include_bias=False))]),
self.features['cyc'])]
elif cyc_method is None:
cyc_transform = [('cyc','passthrough',[])]
else:
raise ValueError("cyc_method must be one of 'trig','spline','interact','onehot','ord',or None")
# Define numerical transform
num_transform = ('num',StandardScaler(),self.features['num']) if num_ss else\
('num','passthrough',self.features['num'])
# Define column transformer
col_transform = ColumnTransformer([('cat',cat_transform,self.features['cat']),
('ord','passthrough',self.features['ord']),
num_transform,
('bin',SimpleImputer(strategy='most_frequent'),
self.features['bin'])]+\
cyc_transform,
remainder='drop',verbose_feature_names_out=False)
steps = [('col',col_transform)]
if 'AGE' in self.features['num']:
steps.insert(0,('gi_age',GroupImputer(target = 'AGE', group_cols=['COUNTY'],strategy='median')))
if 'HOUR_OF_DAY' in self.features['cyc']:
steps.insert(0,('gi_hour',GroupImputer(target = 'HOUR_OF_DAY', group_cols=['ILLUMINATION','CRASH_MONTH'],strategy='mode')))
# Insert optional steps as needed
if over_sample:
steps.insert(0,('os',RandomOverSampler(random_state=self.random_state)))
if poly_features:
steps.append(('pf',PolynomialFeatures(degree=degree,interaction_only=interaction_only)))
if select_features:
steps.append(('fs',SelectKBest(score_func = score_func, k = k)))
if pca:
steps.append(('pca',PCA(n_components=n_components,random_state=self.random_state)))
# Append classifier if provided
if self.classifier is not None:
if self.classifier_name is not None:
steps.append((f'{self.classifier_name}_clf',self.classifier))
else:
steps.append(('clf',self.classifier))
# Initialize pipeline
self.pipe = Pipeline(steps)
def cv_score(self, scoring = 'roc_auc', n_splits = 5, n_repeats=3, thresh = 0.5, beta = 1,
return_mean_score=False,print_mean_score=True,print_scores=False, n_jobs=-1,
eval_size=0.1,eval_metric='auc'):
"""
Method for performing cross validation via RepeatedStratifiedKFold
Parameters:
-----------
scoring : str
scoring function to use. must be one of
'roc_auc','acc','f1','','f1w'
thresh : float
the classification threshold for computing y_pred
from y_pred_proba
beta : float
the beta-value to use in the f_beta score, if chosen
n_splits, n_repeats : int, int
number of splits and number of repeat iterations
for sklearn.model_selection.RepeatedStratifiedKFold
return_mean_score : bool
whether or not to return the mean score
print_mean_score : bool
whether to print out a report of the mean score
print_scores : bool
whether to print out a report of CV scores for all folds
n_jobs : int or None
number of CPU cores to use for parallel processing
-1 uses all available cores, and None defaults to 1
eval_size : float
Fraction of the training set to use for early stopping eval set
eval_metric : str
eval metric to use in early stopping
Returns: None or mean_score, depending on return_mean_score setting
--------
"""
assert self.pipe is not None, 'No pipeline exists; first build a pipeline using build_pipeline.'
assert (self.X is not None)&(self.y is not None), 'X and/or y does not exist. First supply X and y using set_data.'
assert 'clf' in self.pipe.steps[-1][0], 'The pipeline has no classifier. Build a pipeline with a classifier first.'
assert scoring in ['roc_auc','acc','f1','fb','f1w'],"scoring must be one of 'roc_auc','acc','f1','fb','f1w'"
# Initialize CV iterator
kf = RepeatedStratifiedKFold(n_splits = n_splits, n_repeats=n_repeats,
random_state=self.random_state)
# Restrict to features supplied in self.features
X = self.X[[feat for feat_type in self.features for feat in self.features[feat_type]]]
lgb_es=False
# if isinstance(self.pipe[-1],LGBMClassifier):
# if 'early_stopping_round' in self.pipe[-1].get_params():
# if self.pipe[-1].get_params()['early_stopping_rounds'] is not None:
# lgb_es=True
scores = []
# Iterate over folds and train, predict, score
for i,(train_idx,test_idx) in enumerate(kf.split(X,self.y)):
fold_X_train = X.iloc[train_idx,:]
fold_X_test = X.iloc[test_idx,:]
fold_y_train = self.y.iloc[train_idx]
fold_y_test = self.y.iloc[test_idx]
pipe=clone(self.pipe)
if lgb_es:
fold_X_train,fold_X_es,fold_y_train,fold_y_es = train_test_split(fold_X_train,fold_y_train,
stratify=fold_y_train,test_size=eval_size,
random_state=self.random_state)
trans_pipe = pipe[:-1]
trans_pipe.fit_transform(fold_X_train)
fold_X_es = trans_pipe.transform(fold_X_es)
clf_name = pipe.steps[-1][0]
fit_params = {f'{clf_name}__eval_set':[(fold_X_es,fold_y_es)],
f'{clf_name}__eval_metric':eval_metric,
f'{clf_name}__verbose':0}
else:
fit_params = {}
pipe.fit(fold_X_train,fold_y_train,**fit_params)
fold_y_pred_proba = pipe.predict_proba(fold_X_test)[:,1]
if scoring == 'roc_auc':
fold_score = roc_auc_score(fold_y_test, fold_y_pred_proba)
else:
fold_y_pred = (fold_y_pred_proba >= thresh).astype('int')
if scoring == 'acc':
fold_score = accuracy_score(fold_y_test,fold_y_pred)
elif scoring == 'f1':
fold_score = f1_score(fold_y_test,fold_y_pred)
elif scoring == 'f1w':
fold_score = f1_score(fold_y_test,fold_y_pred,average='weighted')
else:
fold_score = fbeta_score(fold_y_test,fold_y_pred,beta=beta)
scores.append(fold_score)
# Average and report
mean_score = np.mean(scores)
if print_scores:
print(f'CV scores using {scoring} score: {scores} \nMean score: {mean_score}')
if print_mean_score:
print(f'Mean CV {scoring} score: {mean_score}')
if return_mean_score:
return mean_score
def randomized_search(self, params, n_components = None, n_iter=10,
scoring='roc_auc',cv=5,refit=False,top_n=10, n_jobs=-1):
"""
Method for performing randomized search with cross validation on a given dictionary of parameter distributions
Also displays a table of results the best top_n iterations
Parameters:
----------
params : dict
parameter distributions to use for RandomizedSearchCV
n_components : int, or list, or None
number of components for sklearn.decomposition.PCA
- if int, will reset the PCA layer in self.pipe with provided value
- if list, must be list of ints, which will be included in
RandomizedSearchCV parameter distribution
scoring : str
scoring function for sklearn.model_selection.cross_val_score
n_iter : int
number of iterations to use in RandomizedSearchCV
refit : bool
whether to refit a final classifier with best parameters
- if False, will only set self.best_params and self.best_score
- if True, will set self.best_estimator in addition
top_n : int or None
if int, will display results from top_n best iterations only
if None, will display all results
n_jobs : int or None
number of CPU cores to use for parallel processing
-1 uses all available cores, and None defaults to 1
"""
assert self.pipe is not None, 'No pipeline exists; first build a pipeline using build_pipeline.'
assert (self.X is not None)&(self.y is not None), 'X and/or y does not exist. First supply X and y using set_data.'
assert 'clf' in self.pipe.steps[-1][0], 'The pipeline has no classifier. Build a pipeline with a classifier first.'
assert (n_components is None)|('pca' in self.pipe.named_steps), 'Your pipeline has no PCA step. Build a pipeline with PCA first.'
assert (len(params)>0)|(type(n_components)==list), 'Either pass a parameter distribution or a list of n_components values.'
# Add estimator name prefix to hyperparams
params = {self.pipe.steps[-1][0]+'__'+key:params[key] for key in params}
# Process supplied n_components
if type(n_components)==list:
params['pca__n_components']=n_components
elif type(n_components)==int:
self.pipe['pca'].set_params(n_components=n_components)
# Restrict to features supplied in self.features
X = self.X[[feat for feat_type in self.features for feat in self.features[feat_type]]]
# Initialize rs and fit
rs = RandomizedSearchCV(self.pipe, param_distributions = params,
n_iter=n_iter, scoring = scoring, cv = cv,refit=refit,
random_state=self.random_state, n_jobs=n_jobs)
rs.fit(X,self.y)
# Display top n scores
results = rs.cv_results_
results_df = pd.DataFrame(results['params'])
param_names = list(results_df.columns)
results_df[f'mean cv score ({scoring})']=pd.Series(results['mean_test_score'])
results_df = results_df.set_index(param_names).sort_values(by=f'mean cv score ({scoring})',ascending=False)
if top_n is not None:
display(results_df.head(top_n).style\
.highlight_max(axis=0, props='color:white; font-weight:bold; background-color:seagreen;'))
else:
display(results_df.style\
.highlight_max(axis=0, props='color:white; font-weight:bold; background-color:seagreen;'))
if refit:
self.best_estimator = rs.best_estimator_
best_params = rs.best_params_
self.best_params = {key.split('__')[-1]:best_params[key] for key in best_params if key.split('__')[0]!='pca'}
self.best_n_components = next((best_params[key] for key in best_params if key.split('__')[0]=='pca'), None)
self.best_score = rs.best_score_
def fit_pipeline(self,split_first=False, eval_size=0.1,eval_metric='auc'):
"""
Method for fitting self.pipeline on self.X,self.y
Parameters:
-----------
split_first : bool
if True, a train_test_split will be performed first
and the validation set will be stored
early_stopping : bool
Indicates whether we will use early_stopping for lightgbm.
If true, will split off an eval set prior to k-fold split
eval_size : float
Fraction of the training set to use for early stopping eval set
eval_metric : str
eval metric to use in early stopping
"""
# Need pipe and X to fit
assert self.pipe is not None, 'No pipeline exists; first build a pipeline using build_pipeline.'
assert self.X is not None, 'X does not exist. First set X.'
# If no y provided, then no pipeline steps should require y
step_list = [step[0] for step in self.pipe.steps]
assert (('clf' not in step_list[-1])&('kf' not in step_list))|(self.y is not None), 'You must provide targets y if pipeline has a classifier step or feature selection step.'
# Don't need to do a train-test split without a classifier
assert (split_first==False)|('clf' in step_list[-1]), 'Only need train-test split if you have a classifier.'
if split_first:
X_train,X_val,y_train,y_val = train_test_split(self.X,self.y,stratify=self.y,
test_size=0.2,random_state=self.random_state)
self.X_val = X_val
self.y_val = y_val
else:
X_train = self.X.copy()
if self.y is not None:
y_train = self.y.copy()
# Restrict to features supplied in self.features
X_train = X_train[[feat for feat_type in self.features for feat in self.features[feat_type]]]
# If LGBM early stopping, then need to split off eval_set and define fit_params
# if isinstance(self.pipe[-1],LGBMClassifier):
# if self.pipe[-1].get_params()['early_stopping_rounds'] is not None:
# X_train,X_es,y_train,y_es = train_test_split(X_train,y_train,
# test_size=eval_size,
# stratify=y_train,
# random_state=self.random_state)
# trans_pipe = self.pipe[:-1]
# trans_pipe.fit_transform(X_train)
# X_es = trans_pipe.transform(X_es)
# clf_name = self.pipe.steps[-1][0]
# fit_params = {f'{clf_name}__eval_set':[(X_es,y_es)],
# f'{clf_name}__eval_metric':eval_metric,
# f'{clf_name}__verbose':0}
# else:
# fit_params = {}
# else:
# fit_params = {}
fit_params = {}
# Fit and store fitted pipeline. If no classifier, fit_transform X_train and store transformed version
pipe = self.pipe
if 'clf' in step_list[-1]:
pipe.fit(X_train,y_train,**fit_params)
else:
X_transformed = pipe.fit_transform(X_train)
# X_transformed = pd.DataFrame(X_transformed,columns=pipe[-1].get_column_names_out())
self.X_transformed = X_transformed
self.pipe_fitted = pipe
def predict_proba_pipeline(self, X_test = None):
"""
Method for using a fitted pipeline to compute predicted
probabilities for X_test (if supplied) or self.X_val
Parameters:
-----------
X_test : pd.DataFrame or None
test data input features (if None, will use self.X_val)
"""
assert self.pipe is not None, 'No pipeline exists; first build a pipeline using build_pipeline.'
assert 'clf' in self.pipe.steps[-1][0], 'The pipeline has no classifier. Build a pipeline with a classifier first.'
assert self.pipe_fitted is not None, 'Pipeline is not fitted. First fit pipeline using fit_pipeline.'
assert (X_test is not None)|(self.X_val is not None), 'Must either provide X_test and y_test or fit the pipeline with split_first=True.'
if X_test is None:
X_test = self.X_val
# Restrict to features supplied in self.features
X_test = X_test[[feat for feat_type in self.features for feat in self.features[feat_type]]]
# Save prediction
self.y_predict_proba = self.pipe_fitted.predict_proba(X_test)[:,1]
def score_pipeline(self,y_test=None,scoring='roc_auc',thresh=0.5, beta = 1,
normalize = None, print_score = True):
"""
Method for scoring self.pipe_fitted on supplied test data and reporting score
Parameters:
-----------
y_test : pd.Series or None
true binary targets (if None, will use self.y_val)
scoring : str
specifies the metric to use for scoring
must be one of
'roc_auc', 'roc_plot', 'acc', 'f1', 'f1w', 'fb','mcc','kappa','conf','classif_report'
thresh : float
threshhold value for computing y_pred
from y_predict_proba
beta : float
the beta parameter in the fb score
normalize : str or None
the normalize parameter for the
confusion_matrix. must be one of
'true','pred','all',None
print_score : bool
if True, will print a message reporting the score
if False, will return the score as a float
"""
assert (y_test is not None)|(self.y_val is not None), 'Must either provide X_test and y_test or fit the pipeline with split_first=True.'
assert self.y_predict_proba is not None, 'Predicted probabilities do not exist. Run predict_proba_pipeline first.'
if y_test is None:
y_test = self.y_val
# Score and report
if scoring == 'roc_plot':
fig = plt.figure(figsize=(4,4))
ax = fig.add_subplot(111)
RocCurveDisplay.from_predictions(y_test,self.y_predict_proba,ax=ax)
plt.show()
elif scoring == 'roc_auc':
score = roc_auc_score(y_test, self.y_predict_proba)
else:
y_pred = (self.y_predict_proba >= thresh).astype('int')
if scoring == 'acc':
score = accuracy_score(y_test,y_pred)
elif scoring == 'f1':
score = f1_score(y_test,y_pred)
elif scoring == 'f1w':
score = f1_score(y_test,y_pred,average='weighted')
elif scoring == 'fb':
score = fbeta_score(y_test,y_pred,beta=beta)
elif scoring == 'mcc':
score = matthews_coffcoeff(y_test,y_pred)
elif scoring == 'kappa':
score = cohen_kappa_score(y_test,y_pred)
elif scoring == 'conf':
fig = plt.figure(figsize=(3,3))
ax = fig.add_subplot(111)
ConfusionMatrixDisplay.from_predictions(y_test,y_pred,ax=ax,colorbar=False)
plt.show()
elif scoring == 'classif_report':
target_names=['neither seriously injured nor killed','seriously injured or killed']
print(classification_report(y_test, y_pred,target_names=target_names))
else:
raise ValueError("scoring must be one of 'roc_auc', 'roc_plot','acc', 'f1', 'f1w', 'fb','mcc','kappa','conf','classif_report'")
if scoring not in ['conf','roc_plot','classif_report']:
if print_score:
print(f'The {scoring} score is: {score}')
else:
return score
def shap_values(self, X_test = None, eval_size=0.1,eval_metric='auc'):
"""
Method for computing and SHAP values for features
stratifiedtrain/test split
A copy of self.pipe is fitted on the training set
and then SHAP values are computed on test set samples
Parameters:
-----------
X_test : pd.DataFrame
The test set; if provided, will not perform
a train/test split before fitting
eval_size : float
Fraction of the training set to use for early stopping eval set
eval_metric : str
eval metric to use in early stopping
Returns: None (stores results in self.shap_vals)
--------
"""
assert self.pipe is not None, 'No pipeline exists; first build a pipeline using build_pipeline.'
assert (self.X is not None)&(self.y is not None), 'X and/or y does not exist. First supply X and y using set_data.'
assert 'clf' in self.pipe.steps[-1][0], 'The pipeline has no classifier. Build a pipeline with a classifier first.'
# Clone pipeline, do train/test split if X_test not provided
pipe = clone(self.pipe)
X_train = self.X.copy()
y_train = self.y.copy()
if X_test is None:
X_train,X_test,y_train,y_test = train_test_split(X_train,y_train,stratify=y_train,
test_size=0.2,random_state=self.random_state)
# Restrict to features provided in self.features, and fit
X_train = X_train[[feat for feat_type in self.features for feat in self.features[feat_type]]]
X_test = X_test[[feat for feat_type in self.features for feat in self.features[feat_type]]]
# If LGBM early stopping, then need to split off eval_set and define fit_params
# if isinstance(self.pipe[-1],LGBMClassifier):
# if 'early_stopping_round' in self.pipe[-1].get_params():
# if self.pipe[-1].get_params()['early_stopping_rounds'] is not None:
# X_train,X_es,y_train,y_es = train_test_split(X_train,y_train,
# test_size=eval_size,
# stratify=y_train,
# random_state=self.random_state)
# trans_pipe = self.pipe[:-1]
# trans_pipe.fit_transform(X_train)
# X_es = trans_pipe.transform(X_es)
# clf_name = self.pipe.steps[-1][0]
# fit_params = {f'{clf_name}__eval_set':[(X_es,y_es)],
# f'{clf_name}__eval_metric':eval_metric,
# f'{clf_name}__verbose':0}
# else:
# fit_params = {}
# else:
# fit_params = {}
fit_params = {}
pipe.fit(X_train,y_train,**fit_params)
# SHAP will just explain classifier, so need transformed X_train and X_test
X_train_trans, X_test_trans = pipe[:-1].transform(X_train), pipe[:-1].transform(X_test)
# Need masker for linear model
masker = shap.maskers.Independent(data=X_train_trans)
# Initialize explainer and compute and store SHAP values as an explainer object
explainer = shap.Explainer(pipe[-1], masker = masker, feature_names = pipe['col'].get_feature_names_out())
self.shap_vals = explainer(X_test_trans)
self.X_shap = X_train_trans
self.y_shap = y_train
def shap_plot(self,max_display='all'):
"""
Method for generating plots of SHAP value results
SHAP values should be already computed previously
Generates two plots side by side:
- a beeswarm plot of SHAP values of all samples
- a barplot of mean absolute SHAP values
Parameters:
-----------
max_display : int or 'all'
The number of features to show in the plot, in descending
order by mean absolute SHAP value. If 'all', then
all features will be included.
Returns: None (plots displayed)
--------
"""
assert self.shap_vals is not None, 'No shap values exist. First compute shap values.'
assert (isinstance(max_display,int))|(max_display=='all'), "'max_display' must be 'all' or an integer"
if max_display=='all':
title_add = ', all features'
max_display = self.shap_vals.shape[1]
else:
title_add = f', top {max_display} features'
# Plot
fig=plt.figure()
ax1=fig.add_subplot(121)
shap.summary_plot(self.shap_vals,plot_type='bar',max_display=max_display,
show=False,plot_size=0.2)
ax2=fig.add_subplot(122)
shap.summary_plot(self.shap_vals,plot_type='violin',max_display=max_display,
show=False,plot_size=0.2)
fig.set_size_inches(12,max_display/3)
ax1.set_title(f'Mean absolute SHAP values'+title_add,fontsize='small')
ax1.set_xlabel('mean(|SHAP value|)',fontsize='x-small')
ax2.set_title(f'SHAP values'+title_add,fontsize='small')
ax2.set_xlabel('SHAP value', fontsize='x-small')
for ax in [ax1,ax2]:
ax.set_ylabel('feature name',fontsize='x-small')
ax.tick_params(axis='y', labelsize='xx-small')
plt.tight_layout()
plt.show()
def find_best_threshold(self,beta=1,conf=True,report=True, print_result=True):
"""
Computes the classification threshold which gives the
best F_beta score from classifier predictions,
prints the best threshold and the corresponding F_beta score,
and displays a confusion matrix and classification report
corresponding to that threshold
Parameters:
-----------
beta : float
the desired beta value in the F_beta score
conf : bool
whether to display confusion matrix
report : bool
whether to display classification report
print_result : bool
whether to print a line reporting the best threshold
and resulting F_beta score
Returns: None (prints results and stores self.best_thresh)
--------
"""
prec,rec,threshs = precision_recall_curve(self.y_val,
self.y_predict_proba)
F_betas = (1+beta**2)*(prec*rec)/((beta**2*prec)+rec)
# Above formula is valid when TP!=0. When TP==0
# it gives np.nan whereas F_beta should be 0
F_betas = np.nan_to_num(F_betas)
idx = np.argmax(F_betas)
best_thresh = threshs[idx]
if print_result:
print(f'Threshold optimizing F_{beta} score: {best_thresh}\nBest F_{beta} score: {F_betas[idx]}')
if conf:
self.score_pipeline(scoring='conf',thresh=best_thresh,beta=beta)
if report:
self.score_pipeline(scoring='classif_report',thresh=best_thresh,beta=beta)
self.best_thresh = best_thresh
class LRStudy(ClassifierStudy):
"""
A child class of ClassifierStudy which has an additional method specific to logistic regression
"""
def __init__(self, classifier=None, X = None, y = None,
features=None,classifier_name = 'LR',
random_state=42):
super().__init__(classifier, X, y,features,classifier_name,random_state)
def plot_coeff(self, print_score = True, print_zero = False, title_add=None):
"""
Method for doing a train/validation split, fitting the classifier,
predicting and scoring on the validation set, and plotting
a bar chart of the logistic regression coefficients corresponding
to various model features.
Features with coefficient zero and periodic spline features
will be excluded from the chart.
Parameters:
-----------
print_score : bool
if True, the validation score are printed
print_zero : bool
if True, the list of features with zero coefficients are printed
title_add : str or None
an addendum that is added to the end of the plot title
"""
assert self.pipe is not None, 'No pipeline exists; first build a pipeline using build_pipeline.'
assert isinstance(self.classifier,LogisticRegression),'Your classifier is not an instance of Logistic Regression.'
# fit and score
self.fit_pipeline(split_first = True)
self.predict_proba_pipeline()
score = roc_auc_score(self.y_val, self.y_predict_proba)
# Retrieve coeff values from fitted pipeline
coeff = pd.DataFrame({'feature name':self.pipe_fitted['col'].get_feature_names_out(),
'coeff value':self.pipe_fitted[-1].coef_.reshape(-1)})\
.sort_values(by='coeff value')
coeff = coeff[~coeff['feature name']\
.isin([f'HOUR_OF_DAY_sp_{n}' for n in range(12)]\
+[f'DAY_OF_WEEK_sp_{n}' for n in range(3)])]\
.set_index('feature name')
coeff_zero_features = coeff[coeff['coeff value']==0].index
coeff = coeff[coeff['coeff value']!=0]
# Plot feature coefficients
fig = plt.figure(figsize=(30,4))
ax = fig.add_subplot(111)
coeff['coeff value'].plot(kind='bar',ylabel='coeff value',ax=ax)
ax.axhline(y=0, color= 'red', linewidth=2,)
plot_title = 'PA bicycle collisions, 2002-2021\nLogistic regression model log-odds coefficients'
if title_add is not None:
plot_title += f': {title_add}'
ax.set_title(plot_title)
ax.tick_params(axis='x', labelsize='x-small')
plt.show()
if print_score:
print(f'Score on validation set: {score}')
if print_zero:
print(f'Features with zero coefficients in trained model: {list(coeff_zero)}')
self.score = score
self.coeff = coeff
self.coeff_zero_features = coeff_zero_features
|