File size: 2,245 Bytes
88d793f
 
 
 
 
 
 
 
 
 
 
 
971f149
88d793f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8831e89
971f149
 
 
 
 
 
 
 
 
 
 
 
 
 
88d793f
 
 
 
 
 
 
 
971f149
88d793f
971f149
88d793f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import gradio as gr
from gradio.data_classes import FileData
from huggingface_hub import snapshot_download
from pathlib import Path
import base64
import spaces
import os

from mistral_inference.transformer import Transformer
from mistral_inference.generate import generate

from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
from mistral_common.protocol.instruct.messages import UserMessage, AssistantMessage, TextChunk, ImageURLChunk
from mistral_common.protocol.instruct.request import ChatCompletionRequest

models_path = Path.home().joinpath('pixtral', 'Pixtral')
models_path.mkdir(parents=True, exist_ok=True)

snapshot_download(repo_id="mistral-community/pixtral-12b-240910", 
                  allow_patterns=["params.json", "consolidated.safetensors", "tekken.json"], 
                  local_dir=models_path)

tokenizer = MistralTokenizer.from_file(f"{models_path}/tekken.json")
model = Transformer.from_folder(models_path)

def image_to_base64(image_path):
    with open(image_path, 'rb') as img:
        encoded_string = base64.b64encode(img.read()).decode('utf-8')
    return f"data:image/jpeg;base64,{encoded_string}"

@spaces.GPU(duration=30)
def run_inference(message, history):
    print(message)
    print(history)

    ## to be fixed
    messages = []
    for couple in history:
        messages.append(UserMessage(content = [ImageURLChunk(image_url=image_to_base64(file["path"])) for file in couple[0][0]]+[TextChunk(text=couple[0][1])]))
        messages.append(AssistantMessage(content = couple[1]))
    ##
        
    messages.append(UserMessage(content = [ImageURLChunk(image_url=image_to_base64(file["path"])) for file in message["files"]]+[TextChunk(text=message["text"])]))
    
    completion_request = ChatCompletionRequest(messages=messages)
    
    encoded = tokenizer.encode_chat_completion(completion_request)
    
    images = encoded.images
    tokens = encoded.tokens
    
    out_tokens, _ = generate([tokens], model, images=[images], max_tokens=512, temperature=0.45, eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id)
    result = tokenizer.decode(out_tokens[0])
    return result

demo = gr.ChatInterface(fn=run_inference, title="Pixtral 12B", multimodal=True)
demo.queue().launch()