Spaces:
Running
on
Zero
Running
on
Zero
To Chat Interface
Browse filesQuick PR still not finished to make it a chat interface instead! Almost done, just history logic to be done, will do later 👍
app.py
CHANGED
@@ -10,7 +10,7 @@ from mistral_inference.transformer import Transformer
|
|
10 |
from mistral_inference.generate import generate
|
11 |
|
12 |
from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
|
13 |
-
from mistral_common.protocol.instruct.messages import UserMessage, TextChunk, ImageURLChunk
|
14 |
from mistral_common.protocol.instruct.request import ChatCompletionRequest
|
15 |
|
16 |
models_path = Path.home().joinpath('pixtral', 'Pixtral')
|
@@ -29,9 +29,20 @@ def image_to_base64(image_path):
|
|
29 |
return f"data:image/jpeg;base64,{encoded_string}"
|
30 |
|
31 |
@spaces.GPU(duration=30)
|
32 |
-
def run_inference(
|
33 |
-
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
encoded = tokenizer.encode_chat_completion(completion_request)
|
37 |
|
@@ -40,26 +51,7 @@ def run_inference(image_url, prompt):
|
|
40 |
|
41 |
out_tokens, _ = generate([tokens], model, images=[images], max_tokens=512, temperature=0.45, eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id)
|
42 |
result = tokenizer.decode(out_tokens[0])
|
43 |
-
return
|
44 |
-
|
45 |
-
with gr.Blocks() as demo:
|
46 |
-
with gr.Row():
|
47 |
-
image_box = gr.Image(type="filepath")
|
48 |
-
|
49 |
-
chatbot = gr.Chatbot(
|
50 |
-
scale = 2,
|
51 |
-
height=750
|
52 |
-
)
|
53 |
-
text_box = gr.Textbox(
|
54 |
-
placeholder="Enter your text and press enter, or upload an image.",
|
55 |
-
container=False,
|
56 |
-
)
|
57 |
-
|
58 |
-
|
59 |
-
btn = gr.Button("Submit")
|
60 |
-
clicked = btn.click(run_inference,
|
61 |
-
[image_box,text_box],
|
62 |
-
chatbot
|
63 |
-
)
|
64 |
|
|
|
65 |
demo.queue().launch()
|
|
|
10 |
from mistral_inference.generate import generate
|
11 |
|
12 |
from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
|
13 |
+
from mistral_common.protocol.instruct.messages import UserMessage, AssistantMessage, TextChunk, ImageURLChunk
|
14 |
from mistral_common.protocol.instruct.request import ChatCompletionRequest
|
15 |
|
16 |
models_path = Path.home().joinpath('pixtral', 'Pixtral')
|
|
|
29 |
return f"data:image/jpeg;base64,{encoded_string}"
|
30 |
|
31 |
@spaces.GPU(duration=30)
|
32 |
+
def run_inference(message, history):
|
33 |
+
print(message)
|
34 |
+
print(history)
|
35 |
+
|
36 |
+
## to be fixed
|
37 |
+
messages = []
|
38 |
+
for couple in history:
|
39 |
+
messages.append(UserMessage(content = [ImageURLChunk(image_url=image_to_base64(file["path"])) for file in couple[0][0]]+[TextChunk(text=couple[0][1])]))
|
40 |
+
messages.append(AssistantMessage(content = couple[1]))
|
41 |
+
##
|
42 |
+
|
43 |
+
messages.append(UserMessage(content = [ImageURLChunk(image_url=image_to_base64(file["path"])) for file in message["files"]]+[TextChunk(text=message["text"])]))
|
44 |
+
|
45 |
+
completion_request = ChatCompletionRequest(messages=messages)
|
46 |
|
47 |
encoded = tokenizer.encode_chat_completion(completion_request)
|
48 |
|
|
|
51 |
|
52 |
out_tokens, _ = generate([tokens], model, images=[images], max_tokens=512, temperature=0.45, eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id)
|
53 |
result = tokenizer.decode(out_tokens[0])
|
54 |
+
return result
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
+
demo = gr.ChatInterface(fn=run_inference, title="Pixtral 12B", multimodal=True)
|
57 |
demo.queue().launch()
|