Spaces:
Runtime error
Runtime error
espejelomar
commited on
Commit
•
923f66c
1
Parent(s):
cdd2963
adding backend folder
Browse files- backend/__init__.py +0 -0
- backend/config.json +41 -0
- backend/pipeline.py +73 -0
- backend/util.py +40 -0
backend/__init__.py
ADDED
File without changes
|
backend/config.json
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"id2label": {
|
3 |
+
"0": "Abyssinian",
|
4 |
+
"1": "Bengal",
|
5 |
+
"2": "Birman",
|
6 |
+
"3": "Bombay",
|
7 |
+
"4": "British_Shorthair",
|
8 |
+
"5": "Egyptian_Mau",
|
9 |
+
"6": "Maine_Coon",
|
10 |
+
"7": "Persian",
|
11 |
+
"8": "Ragdoll",
|
12 |
+
"9": "Russian_Blue",
|
13 |
+
"10": "Siamese",
|
14 |
+
"11": "Sphynx",
|
15 |
+
"12": "american_bulldog",
|
16 |
+
"13": "american_pit_bull_terrier",
|
17 |
+
"14": "basset_hound",
|
18 |
+
"15": "beagle",
|
19 |
+
"16": "boxer",
|
20 |
+
"17": "chihuahua",
|
21 |
+
"18": "english_cocker_spaniel",
|
22 |
+
"19": "english_setter",
|
23 |
+
"20": "german_shorthaired",
|
24 |
+
"21": "great_pyrenees",
|
25 |
+
"22": "havanese",
|
26 |
+
"23": "japanese_chin",
|
27 |
+
"24": "keeshond",
|
28 |
+
"25": "leonberger",
|
29 |
+
"26": "miniature_pinscher",
|
30 |
+
"27": "newfoundland",
|
31 |
+
"28": "pomeranian",
|
32 |
+
"29": "pug",
|
33 |
+
"30": "saint_bernard",
|
34 |
+
"31": "samoyed",
|
35 |
+
"32": "scottish_terrier",
|
36 |
+
"33": "shiba_inu",
|
37 |
+
"34": "staffordshire_bull_terrier",
|
38 |
+
"35": "wheaten_terrier",
|
39 |
+
"36": "yorkshire_terrier"
|
40 |
+
}
|
41 |
+
}
|
backend/pipeline.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, List, Any
|
2 |
+
from PIL import Image
|
3 |
+
import os
|
4 |
+
import json
|
5 |
+
import numpy as np
|
6 |
+
from fastai.learner import load_learner
|
7 |
+
|
8 |
+
|
9 |
+
class PreTrainedPipeline:
|
10 |
+
def __init__(self, path=""):
|
11 |
+
# IMPLEMENT_THIS
|
12 |
+
# Preload all the elements you are going to need at inference.
|
13 |
+
# For instance your model, processors, tokenizer that might be needed.
|
14 |
+
# This function is only called once, so do all the heavy processing I/O here"""
|
15 |
+
self.model = load_learner(os.path.join(path, "export.pkl"))
|
16 |
+
with open(os.path.join(path, "config.json")) as config:
|
17 |
+
config = json.load(config)
|
18 |
+
self.id2label = config["id2label"]
|
19 |
+
|
20 |
+
def __call__(self, inputs: "Image.Image") -> List[Dict[str, Any]]:
|
21 |
+
"""
|
22 |
+
Args:
|
23 |
+
inputs (:obj:`PIL.Image`):
|
24 |
+
The raw image representation as PIL.
|
25 |
+
No transformation made whatsoever from the input. Make all necessary transformations here.
|
26 |
+
Return:
|
27 |
+
A :obj:`list`:. The list contains items that are dicts should be liked {"label": "XXX", "score": 0.82}
|
28 |
+
It is preferred if the returned list is in decreasing `score` order
|
29 |
+
"""
|
30 |
+
# IMPLEMENT_THIS
|
31 |
+
# FastAI expects a np array, not a PIL Image.
|
32 |
+
_, _, preds = self.model.predict(np.array(inputs))
|
33 |
+
preds = preds.tolist()
|
34 |
+
labels = [
|
35 |
+
{"label": str(self.id2label["0"]), "score": preds[0]},
|
36 |
+
{"label": str(self.id2label["1"]), "score": preds[1]},
|
37 |
+
{"label": str(self.id2label["2"]), "score": preds[2]},
|
38 |
+
{"label": str(self.id2label["3"]), "score": preds[3]},
|
39 |
+
{"label": str(self.id2label["4"]), "score": preds[4]},
|
40 |
+
{"label": str(self.id2label["5"]), "score": preds[5]},
|
41 |
+
{"label": str(self.id2label["6"]), "score": preds[6]},
|
42 |
+
{"label": str(self.id2label["7"]), "score": preds[7]},
|
43 |
+
{"label": str(self.id2label["8"]), "score": preds[8]},
|
44 |
+
{"label": str(self.id2label["9"]), "score": preds[9]},
|
45 |
+
{"label": str(self.id2label["10"]), "score": preds[10]},
|
46 |
+
{"label": str(self.id2label["11"]), "score": preds[11]},
|
47 |
+
{"label": str(self.id2label["12"]), "score": preds[12]},
|
48 |
+
{"label": str(self.id2label["13"]), "score": preds[13]},
|
49 |
+
{"label": str(self.id2label["14"]), "score": preds[14]},
|
50 |
+
{"label": str(self.id2label["15"]), "score": preds[15]},
|
51 |
+
{"label": str(self.id2label["16"]), "score": preds[16]},
|
52 |
+
{"label": str(self.id2label["17"]), "score": preds[17]},
|
53 |
+
{"label": str(self.id2label["18"]), "score": preds[18]},
|
54 |
+
{"label": str(self.id2label["19"]), "score": preds[19]},
|
55 |
+
{"label": str(self.id2label["20"]), "score": preds[20]},
|
56 |
+
{"label": str(self.id2label["21"]), "score": preds[21]},
|
57 |
+
{"label": str(self.id2label["22"]), "score": preds[22]},
|
58 |
+
{"label": str(self.id2label["23"]), "score": preds[23]},
|
59 |
+
{"label": str(self.id2label["24"]), "score": preds[24]},
|
60 |
+
{"label": str(self.id2label["25"]), "score": preds[25]},
|
61 |
+
{"label": str(self.id2label["26"]), "score": preds[26]},
|
62 |
+
{"label": str(self.id2label["27"]), "score": preds[27]},
|
63 |
+
{"label": str(self.id2label["28"]), "score": preds[28]},
|
64 |
+
{"label": str(self.id2label["29"]), "score": preds[29]},
|
65 |
+
{"label": str(self.id2label["30"]), "score": preds[30]},
|
66 |
+
{"label": str(self.id2label["31"]), "score": preds[31]},
|
67 |
+
{"label": str(self.id2label["32"]), "score": preds[32]},
|
68 |
+
{"label": str(self.id2label["33"]), "score": preds[33]},
|
69 |
+
{"label": str(self.id2label["34"]), "score": preds[34]},
|
70 |
+
{"label": str(self.id2label["35"]), "score": preds[35]},
|
71 |
+
{"label": str(self.id2label["36"]), "score": preds[36]},
|
72 |
+
]
|
73 |
+
return labels
|
backend/util.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from PIL import Image
|
3 |
+
from backend.pipeline import PreTrainedPipeline
|
4 |
+
import pandas as pd
|
5 |
+
import io
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
import numpy as np
|
8 |
+
|
9 |
+
|
10 |
+
def import_fig():
|
11 |
+
image = st.file_uploader("Upload your picture.", type=["png", "jpg", "jpeg"])
|
12 |
+
if image:
|
13 |
+
bytes_image = image.getvalue()
|
14 |
+
image = Image.open(io.BytesIO(bytes_image))
|
15 |
+
st.image(image, caption=["We are classifying this image..."])
|
16 |
+
return image
|
17 |
+
|
18 |
+
|
19 |
+
def plot(data=None):
|
20 |
+
|
21 |
+
fig = plt.figure()
|
22 |
+
ax = fig.add_axes([0, 0, 1, 1])
|
23 |
+
breeds = data.head(3)["label"].tolist()
|
24 |
+
labels = data.head(3)["score"].tolist()
|
25 |
+
ax.bar(breeds, labels)
|
26 |
+
ax.set_ylabel("Probability that your pet is breed X")
|
27 |
+
ax.grid("on")
|
28 |
+
|
29 |
+
st.pyplot(fig)
|
30 |
+
|
31 |
+
|
32 |
+
@st.cache(allow_output_mutation=True)
|
33 |
+
def fastai_model(image):
|
34 |
+
if image:
|
35 |
+
model = PreTrainedPipeline(path="backend")
|
36 |
+
outputs = model(image)
|
37 |
+
|
38 |
+
outputs_df = pd.DataFrame(outputs)
|
39 |
+
|
40 |
+
return outputs_df.sort_values(by=["score"], ascending=False)
|